提要钩玄:本文主要介绍队列的结构、基本原理及操作,涉及到两种实现:顺序队列和链队列。
1. 什么是队列?
先举一个日常例子,排队买饭。
大家按先来后到的顺序,在窗口前排队买饭,先到先得,买完之后走开,轮到下一位买,新来的人排在队尾,不能插队。
可见,上面的“队”的特点是只允许从一端进入,从另一端离开。
这样的一个队,放在数据结构中就是“队列”。
首先,队列是一个线性表,所以它具有线性表的基本特点。
其次,队列是一个受限的线性表,受限之处为:只允许从一端进入队列,从另一端离开。
根据以上特点,可以画出示意图:
出队元素 1,入队元素 4 之后:
下面是几个相关名词:
- 入队:进入队列,即向队列中插入元素
- 出队:离开队列,即从队列中删除元素
- 队头:允许出队(删除)的一端
- 队尾:允许入队(插入)的一端
- 队头元素:队列中最先入栈的元素
- 队尾元素:队列中最后入栈的元素
我们可以直接将队头元素看作队头,队尾元素看作队尾。(这些名词概念,有所理解即可,不必细究)
队列的重要特性是在队尾进行入队操作,在队头进行出队操作,所以上图元素的入队顺序为:1、2、3,出队顺序为:1、2、3,也即,先入队的先出队(First In First Out, FIFO),后入队的后出队(Last In Last Out, LILO).
总结一下,队列是一种只允许在一端进行插入操作,在另一端进行删除操作的先入先出的受限的线性表。
2. 队列的实现思路
和栈一样,队列也可以有两种实现方式:数组实现的顺序队列和链表实现的链队列。
2.1. 数组实现——顺序队列
一个用数组实现的顺序队列如下图所示:
可以看到,要实现一个顺序队列,我们需要以下结构:
- 存储数据的数组 ——
data[]
- 表示队列的最大容量的值 ——
MAXSIZE
- 标识队头端的队头下标 ——
front
- 标识队尾端的队尾下标 ——
rear
front
和 rear
会随着入队和出队操作而变化,为了方便起见,我们规定在非空队列中,队尾下标是队尾元素的下一个元素的下标。
了解了结构之后,我们可以很容易使用 C 语言的结构体实现它:
#define MAXSIZE 5 //顺序队列的最大存储容量
/*顺序队列的结构体*/
typedef struct {
int data[MAXSIZE];
int front; //队头下标
int rear; //队尾下标
} QueueArray;
2.2. 链表实现——链队列
我们使用带头节点的单链表来实现队列,如下图所示:
可以看到,要实现一个链队列,需要以下结构:
- 单链表的基本单元结点 ——
QueueNode
- 存储数据的数据域 ——
data
- 指向下一个结点的指针域 ——
next
- 存储数据的数据域 ——
- 指向链表的头指针 ——
head
- 标识队头端的队头指针 ——
front
- 标识队尾端的队尾指针 ——
rear
其中,头指针 head
和队头指针 front
都指向了单链表的第一个结点,所以这个指针可以合二为一,队头指针即头指针。
如此一来,我们可以借助链表的尾插法实现队列的入队操作,借助链表的头删法实现队列的出队操作。
搞清了结构,用结构体实现如下:
/*单链表的结点的结构体*/
typedef struct QueueNode {
int data; //数据域
struct QueueNode *next; //指针域
} QueueNode;
/*链队列的结构体*/
typedef struct {
QueueNode *front; //队头指针
QueueNode *rear; //队尾指针
} QueueLink;
3. 队列的状态
3.1. 顺序队列(问题版)
【空队列】:空队列中没有元素,此时,队头下标和队尾下标均为 0,即front = rear = 0
:
【非空非满队列】:队列不是空队列且有剩余空间:
【满队列】:顺序队列分配的固定空间用尽,没有多余空间,不能再插入元素,此时 front = 0
,rear = MAXSIZE
:
从上图中可以看出,非空队列的队尾下标 rear
始终是队尾元素的下一个元素的下标。
3.2. 假满队列
以上是用数组实现的顺序队列的三种状态,但上图中三种队列是存在问题的,那就是队列的存储问题!
先再次明确队列的两条重要特性:
- 队列只允许在队头删除元素,在队尾插入元素
- 我们规定:
front
是队头元素的下标,rear
是队尾元素的下标,二者会随着出队和入队操作而变化
由于上面的三幅图中 front
都在下标 0 处,所以不容易看出问题,请看下面的过程图:
简单用文字描述以下上述过程:
图1:空队列
图2:进队 3 个元素:1、2、3
图3:出队 2 个元素:1、2
图4:入队 2 个元素:4、5
到此为止,一切正常。
图5:入队 1 个元素,但在图4中 rear = 5
已经超出数组的最大范围,所以图5入队一个元素会报错,这个队列不能再插入元素了。
图5的队列满了吗?没满!能继续插入元素吗?不能!有剩余空间却不能用,这就好比有空房的酒店不让客户入住,这叫不会做生意。
满队列的是空间用尽,不能再插入元素的队列,虽然图5的队列也不能继续插入元素了,但它还有剩余空间,所以这样的队列还不能称之为满队列,可称之为假满队列。
之所以假满队列存在问题,是因为顺序队列的空间是有限的,通过若干入队操作之后,我们的 rear
“跑”到数组外从而导致越界了。
明明才存储了一个元素,却因为假满,整个队列不能再存储了。这样的队列肯定不是合格的数据结构。
怎么解决呢?报错是 rear
越界导致,而队列的前大部分都是空闲的,所以当 rear
越界时,我们可不可以将其移动到下标 0 处呢?
显然是可以的,这样就构成了一个“循环”,我们称这种 front
和 rear
可以循环利用的队列为循环队列。
3.3. 循环队列
为了突出“循环”二字,我们将这种顺序队列画成一个圆:
循环队列的 rear
和 front
能够在队列中一圈一圈地转,像钟表的时针和分针一样。不会再出现不能利用的空间了。
顺序队列的形式从“直的”变成这种可循环的之后,对于状态的判断也改变了。
【空队列】:队列中没有元素,如上图。
请注意,空队列的条件并不是 front = rear = 0
,比如一个空队列经过 3 次入队和 3 次出队操作后仍为空队列:
所以,循环队列为空队列时,条件应该为 front = rear
【满队列】:队列中没有空闲空间
上图是一个最大容量为 8 的空队列,入队 7 个元素后,队列中还剩 1 个空闲位置,如果此时我们再入队 1 个元素:
此时队列中确实没有空闲空间了,但注意,此时队列满足了 rear = front
,但满足 rear = front
的队列不应该是空队列吗?
这就产生误会了。
不如我们退一步海阔天空,少用一个元素,借此来消除误会。如下图,规定这样是一个满队列。
我们规定,front
出现在 rear
的下一个位置时,队列为满队列。
比如在上图的满队列中, front = 3
在 rear = 2
的下一个位置。
所以队列为满队列的判定条件为:rear + 1 = front
,但这的条件是不准确的。
因为循环队列中的 front
和 rear
都是循环使用的,就像钟表的时针一样,所以我们仅根据下标的大小来判断位置是不合理的。下面两个均是满队列,右图不满足rear + 1 = front
:
就像钟表的时针满 12 归零一样,front
和 rear
也应该满某个数后归零,这个数就是 MAXSIZE
。
比如 rear = 7
时,如果按平常做法来 ,下一步应该是 rear = 8
,但在这里,我们让其归零,所以下一步应该是 rear = 0
。
用数学公式来表示上面的归零过程就是:rear % MAXSIZE
所以满队列的判断条件应该为:(rear + 1) % MAXSIZE = front
。
【非空非满队列】很好理解,不再赘述。
3.4. 链队列
我们使用带头结点的单链表来实现链队列。
【空队列】:即一个空链表,此时队头指针(兼链表头指针)和队尾指针均指向头结点。
【非空队列】:不像顺序队列那样有空间的限制,链队列的空间是不受限制的(只要你的内存足够大),所以自然不存在“满队列”“循环队列”的概念。
4. 初始化
在进行队列的操作前,应该先将其初始化出来,即初始化一个空队列出来。
4.1. 顺序队列
将队列的队头下标和队尾下标置为 0 即可。
/**
* 初始化顺序队列:将队头下标和队尾下标置为0
* queue: 指向队列的指针
*/
void init(QueueArray *queue)
{
queue->front = 0;
queue->rear = 0;
}
4.2. 链队列
创造出头结点,然后将队头指针和队尾指针均指向头结点即可。
/**
* 初始化链队列:将队头指针和队尾指针指向头结点
*/
void init(QueueLink *queue)
{
//创造头结点
QueueNode *head_node = create_node(0);
//队头指针 队尾指针指向头结点
queue->front = head_node;
queue->rear = head_node;
}
5. 入队操作
入队操作只允许元素从队尾进。
5.1. 顺序队列
前面我们规定,顺序队列的队尾下标为队尾元素的下一个元素,所以直接将待入队元素放入队尾下标处,然后队尾下标“加一”。(注意:循环队列中的加一要对 MAXSIZE 取模)
/**
* 入队操作
* queue: 指向队列的指针
* elem: 入队的数据
* return: 0失败,1成功
*/
int en_queue(QueueArray *queue, int elem)
{
//判断队列是否已满
if ((queue->rear + 1) % MAXSIZE == queue->front) {
printf("队列已满,无法继续入队。n");
return 0;
}
//元素入队
queue->data[queue->rear] = elem;
//队尾下标加一
queue->rear = (queue->rear + 1) % MAXSIZE;
return 1;
}
5.2. 链队列
链队列的入队操作本质是单链表的尾插法:
/** * 入队操作
* queue: 指向队列的指针
* elem: 入队的数据
*/
void en_queue(QueueLink *queue, int elem)
{
//创造新结点
QueueNode *new = create_node(elem);
//入队(尾插法)
queue->rear->next = new;
queue->rear = new;
}
6. 出队操作
出队操作只允许元素从队头出。
6.1. 顺序队列
将队头下标处的元素出队,然后将队头下标“加一”(对 MAXSIZE 取模)。
/**
* 出队操作
* queue: 指向队列的指针
* elem: 指向保存出队数据的变量
* return: 0失败,1成功
*/
int de_queue(QueueArray *queue, int *elem)
{
//判读队列是否为空
if (queue->front == queue->rear) {
printf("队列空,无元素可出。n");
return 0;
}
//元素出队
*elem = queue->data[queue->front];
//队头下标加一
queue->front = (queue->front + 1) % MAXSIZE;
return 1;
}
6.2. 链队列
链队列的出队操作本质上是单链表的头删法。注意,如果出队的是队列中最后一个元素,需要在出队后,将队尾指针重新指向头结点,重新形成空队列。
/**
* 出队操作
* queue: 指向队列的指针
* elem: 指向保存变量的指针
* return: 0失败,1成功
*/
int de_queue(QueueLink *queue, int *elem)
{
//判读队列是否为空
if (queue->front == queue->rear) {
printf("队列空,无元素可出。n");
return 0;
}
QueueNode *front_node = queue->front->next; //队头元素
//保存数据
*elem = front_node->data;
//队头元素出队(头删法)
queue->front->next = front_node->next;
//如果元素出完,队尾指针重新指向头结点
if (front_node == queue->rear)
queue->rear = queue->front;
free(front_node);
}
7. 遍历操作
这里以打印整个队列为例,介绍如何遍历队列。
顺序队列有队头下标和队尾下标,链队列有队头指针和队尾指针,我们要做的就是借助一个临时变量,从队头下标逐个遍历到队尾下标即可。
7.1. 顺序队列
借助临时变量 i
,从队头下标开始逐个“加一”直到队尾下标结束。
开始标志为:i = front
加一操作为:i = (i + 1) % MAXSIZE
结束标志为:i % MAXSIZE = rear
/**
* 打印队列
*/
void output(QueueArray queue)
{
int i = queue.front;
while (i % MAXSIZE != queue.rear) {
printf("%d ", queue.data[i]);
i = (i + 1) % MAXSIZE;
}
printf("n");
}
如何计算顺序队列的长度?当然你可以遍历队列然后借助计数变量来存储长度,这样比较麻烦。因为顺序队列是使用数组实现的,所以顺序队列的长度我们可以直接根据下标计算出来。
如果是一个非循环队列,那很简单,直接 rear - front
就是队列的长度了。
但循环队列不能这样直接减了,因为 rear
和 front
之间的位置关系是不确定的。
左图 rear < front
,我们可以将其长度看成两部分组成:
- 下标 0 到
rear
,长度为rear - 0
- 下标
MAXSIZE - 1
到rear
,长度为MAXSIZE - front
所以长度为 rear - front + MAXSIZE
为了满足右图 rear > front
的情况,如果按照上式,则此时多加了一个 MAXSIZE
,所以需要对其再对 MAXIZE
取余。
所以循环队列的长度为 (rear - front + MAXSIZE) % MAXSIZE
(空队列也满足)。
7.2. 链队列
借助指针 p
从队头元素遍历至队尾元素即可。
/**
* 打印队列
*/
void output(QueueLink *queue)
{
QueueNode *p = queue->front->next; //p指向队头元素
while (p != NULL) {
printf("%d ", p->data);
p = p->next;
}
printf("n");
}
以上就是队列的基本原理及操作。
如有错误,还请指正。
如果觉得写的不错,可以点个赞和关注。后续会有更多数据结构和算法相关文章。
【推荐阅读】
文章来源: 博客园
原文链接: https://www.cnblogs.com/xingrenguanxue/p/14622468.html
- 还没有人评论,欢迎说说您的想法!