今天对照Tensorflow的书,实现了一个进阶的卷积神经网络。基于CIFAR-10数据集。

CIFAR-10数据集官网:http://www.cs.toronto.edu/~kriz/cifar.html

(这里选择二进制版本进行下载)

与之前的简单的神经网络相比,此进阶的神经网络,使用了一些新的技巧:

1. 对weights进行了L2正则化

2. 对图片进行了翻转、剪切等图片增强

3. 使用了LRN层,增强了图片的泛化能力

代码如下:


 
  1.  
    import cifar10, cifar10_input
  2.  
    import tensorflow as tf
  3.  
    import numpy as np
  4.  
    import time
  5.  
     
  6.  
    # 定义一个batch的大小,定义训练轮数maxstep
  7.  
    max_step = 3000
  8.  
    batch_size = 128
  9.  
    data_dir = '/home/heyang/databaseImg/cifar-10-batches-bin'
  10.  
     
  11.  
     
  12.  
    # 定义初始化weight函数
  13.  
    # 依然使用截断的truncated_normal分布来初始化权重
  14.  
    # 加一个L2的loss防止过拟合
  15.  
    def variable_with_weight_loss(shape, stddev, w1):
  16.  
    var = tf.Variable(tf.truncated_normal(shape, stddev=stddev))
  17.  
    if w1 is not None:
  18.  
    weight_loss = tf.multiply(tf.nn.l2_loss(var), w1, name="weight_loss")
  19.  
    tf.add_to_collection('losses', weight_loss)
  20.  
    return var
  21.  
     
  22.  
     
  23.  
    # 使用distorted_input产生更多的输入数据,进行数据增强
  24.  
    images_train, labels_train = cifar10_input.distorted_inputs(
  25.  
    data_dir=data_dir, batch_size=batch_size
  26.  
    )
  27.  
     
  28.  
    # 生成测试数据,inputs方法里只有裁剪
  29.  
    images_test, labels_test = cifar10_input.inputs(eval_data=True,
  30.  
    data_dir=data_dir,
  31.  
    batch_size=batch_size)
  32.  
     
  33.  
    # 创建输入数据的placeholder[batchsize,尺寸,尺寸,通道数]
  34.  
    image_holder = tf.placeholder(tf.float32, [batch_size, 24, 24, 3])
  35.  
    label_holder = tf.placeholder(tf.int32, [batch_size])
  36.  
     
  37.  
    # 第一个卷积层
  38.  
    # 其中,池化层为3×3,步长为2×2
  39.  
    # 增加了一个LRN层,归一化局部特征
  40.  
    weight1 = variable_with_weight_loss(shape=[5, 5, 3, 64], stddev=5e-2,
  41.  
    w1=0.0)
  42.  
    kernel1 = tf.nn.conv2d(image_holder, weight1, [1, 1, 1, 1], padding='SAME')
  43.  
    bias1 = tf.Variable(tf.constant(0.0, shape=[64]))
  44.  
    conv1 = tf.nn.relu(tf.nn.bias_add(kernel1, bias1))
  45.  
    pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
  46.  
    padding='SAME')
  47.  
    norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
  48.  
     
  49.  
    # 第二个卷积层
  50.  
    # 次层的LRN层在池化层之前
  51.  
    weight2 = variable_with_weight_loss(shape=[5, 5, 64, 64], stddev=5e-2,
  52.  
    w1=0.0)
  53.  
    kernel2 = tf.nn.conv2d(norm1, weight2, [1, 1, 1, 1], padding='SAME')
  54.  
    bias2 = tf.Variable(tf.constant(0.1, shape=[64]))
  55.  
    conv2 = tf.nn.relu(tf.nn.bias_add(kernel2, bias2))
  56.  
    norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75)
  57.  
    pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
  58.  
    padding='SAME')
  59.  
     
  60.  
    # 使用全连接层3
  61.  
    # reshape第二个卷积层的输出
  62.  
    # getshape得到数据扁平化后的长度
  63.  
    # 设置了一个非0的weight_loss保证此层都被L2正则约束
  64.  
    reshape = tf.reshape(pool2, [batch_size, -1])
  65.  
    dim = reshape.get_shape()[1].value
  66.  
    weight3 = variable_with_weight_loss(shape=[dim, 384], stddev=0.04, w1=0.004)
  67.  
    bias3 = tf.Variable(tf.constant(0.1, shape=[384]))
  68.  
    local3 = tf.nn.relu(tf.matmul(reshape, weight3) + bias3)
  69.  
     
  70.  
    # 全连接层4
  71.  
    weight4 = variable_with_weight_loss(shape=[384, 192], stddev=0.04, w1=0.004)
  72.  
    bias4 = tf.Variable(tf.constant(0.1, shape=[192]))
  73.  
    local4 = tf.nn.relu(tf.matmul(local3, weight4) + bias4)
  74.  
     
  75.  
    # 最后一层,正态分布标准差设为上一层层数的倒数
  76.  
    # 不过在此处不使用softmax输出最终结果
  77.  
    weight5 = variable_with_weight_loss(shape=[192, 10], stddev=1 / 192.0, w1=0.0)
  78.  
    bias5 = tf.Variable(tf.constant(0.0, shape=[10]))
  79.  
    logits = tf.add(tf.matmul(local4, weight5), bias5)
  80.  
     
  81.  
     
  82.  
    # 计算loss
  83.  
    # 把softmax与cross_entropy联合在一起使用
  84.  
    # 然后计算均值
  85.  
    # 然后添加到整体的losses中,得到最终的loss(里面包含两个全连接层的L2)
  86.  
    def loss(logits, labels):
  87.  
    labels = tf.cast(labels, tf.int64)
  88.  
    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
  89.  
    logits=logits, labels=labels, name='cross_entropy_per_example'
  90.  
    )
  91.  
    cross_entropy_mean = tf.reduce_mean(cross_entropy,
  92.  
    name='cross_entropy')
  93.  
    tf.add_to_collection('losses', cross_entropy_mean)
  94.  
     
  95.  
    return tf.add_n(tf.get_collection('losses'), name='total_loss')
  96.  
     
  97.  
     
  98.  
    # 设置优化器
  99.  
    loss = loss(logits, label_holder)
  100.  
    train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)
  101.  
    top_k_op = tf.nn.in_top_k(logits, label_holder, 1)
  102.  
     
  103.  
    # 创建默认的Session
  104.  
    sess = tf.InteractiveSession()
  105.  
    tf.global_variables_initializer().run()
  106.  
     
  107.  
    # 启动线程队列(用于图片数据增强)
  108.  
    tf.train.start_queue_runners()
  109.  
     
  110.  
    # 正式训练开始
  111.  
    for step in range(max_step):
  112.  
    start_time = time.time()
  113.  
    image_batch, label_batch = sess.run([images_train, labels_train])
  114.  
    _, loss_value = sess.run([train_op, loss],
  115.  
    feed_dict={image_holder: image_batch, label_holder: label_batch})
  116.  
    duration = time.time() - start_time
  117.  
    if step % 10 == 0:
  118.  
    examples_per_sec = batch_size / duration
  119.  
    sec_per_batch = float(duration)
  120.  
     
  121.  
    format_str = ('step %d, loss = %.2f (%.1f examples/sec; %.3f sec/batch)')
  122.  
    print(format_str % (step, loss_value, examples_per_sec, sec_per_batch))
  123.  
     
  124.  
    # 评测准确率
  125.  
    # 以top数相同为正确,除以总数为正确率
  126.  
    num_examples = 10000
  127.  
    import math
  128.  
     
  129.  
    num_iter = int(math.ceil(num_examples / batch_size))
  130.  
    true_count = 0
  131.  
    total_sample_count = num_iter * batch_size
  132.  
    step = 0
  133.  
    while step < num_iter:
  134.  
    image_batch, label_batch = sess.run([images_test, labels_test])
  135.  
    predictions = sess.run([top_k_op], feed_dict={image_holder: image_batch,
  136.  
    label_holder: label_batch})
  137.  
    true_count += np.sum(predictions)
  138.  
    step += 1
  139.  
     
  140.  
    precision = true_count / total_sample_count
  141.  
    print('precision @ 1 = %.3f' % precision)
  142.  
     

结果如下:

内容来源于网络如有侵权请私信删除
你还没有登录,请先登录注册
  • 还没有人评论,欢迎说说您的想法!