标签:AI
标准线性回归:                     局部加权线性回归: 线性回归的一个问题是有可能出现欠拟合现象,因为它求的是具有小均方误差的无偏估 计。显而易见,如果模型欠拟合将不能取得好的预测效果。所以有些方法允许在估计中引入一 些偏差,从而降低预测的均方误差。 其中的一个方法是局部加权线性
#tensor和numpy import torch import numpy as np numpy_tensor = np.random.randn(3,4) print(numpy_tensor) #将numpy的ndarray转换到tendor上 pytorch_tensor1 = torc
自然语言处理NLP( natural language process)是这几年越来越火了,kaggle上的比赛有关NLP的也日渐多起来了. NLP的应用场景很多,情感分析,邮件过滤,ai客服,机器翻译等等等等,就像这几年越来越火有成为BAT之后第四极的今日头条,为什么能够为每个人推送不同的感兴趣的
2. 区域建议网络 区域建议网络(Regional Proposal Network, RPN),根据特征图上每一个点的向量,为这个点生成k个矩形建议框。每一个点输出的内容包括:reg层4个输出x、y、w、h,其中x、y是矩形建议框中心的目标,w、h是矩形建议框的宽度和高度,cls层输出两
一、软阈值算法及推导:二、近端投影与近端梯度下降以上推导是结合很多大佬博客整理的,如有侵权,请及时联系,将对其进行修改。
2010年01月01日 到 2018年12月21日 之间,滚动市盈率历史新低排名。上市三年以上的公司,2018年12月21日市盈率在300以下的公司。 1 - 厦门象屿(SH600057) - 历史新低 - 滚动市盈率PE:8.66 - 滚动市净率PB:0.75 - 滚动年化股
1.SVM讲解 新闻分类案例 SVM是一个很复杂的算法,不是一篇博文就能够讲完的,所以此篇的定位是初学者能够接受的程度,并且讲的都是SVM的一种思想,通过此篇能够使读着会使用SVM就行,具体SVM的推导过程有一篇博文是讲得非常细的,具体链接我放到最后面,供大家参考。 1.1支持向量机(SVM)的由来
L1和L2在不同领域的不同叫法机器学习领域:正则化项统计学领域:惩罚项数学领域:范数Lasso和Ridge回归在Lasso回归中正则化项是用的L1,L1是绝对值距离也叫做哈曼顿距离。Lasso回归可以压缩一些系数,把一些系数变为0,是一种处理具有复共线性数据的有偏估计。在Ridge回归中正则化项是用
1.决策树 决策树模型demo 随机森林模型demo 1.1从LR到决策树 相信大家都做过用LR来进行分类,总结一下LR模型的优缺点: 优点 适合需要得到一个分类概率的场景。 实现效率较高。 很好处理线性特征。 缺点 当特征空间很大时,逻辑回归的性能不是很好。 不能很好地处理大量多类特征。 对于非线
1.逻辑回归(Logistic Regression) GitHub地址(案例代码加数据) 1.1逻辑回归与线性回归的关系 逻辑回归是用来做分类算法的,大家都熟悉线性回归,一般形式是Y=aX+b,y的取值范围是[-∞, +∞],有这么多取值,怎么进行分类呢?不用担心,伟大的数学家已经为我们找到了一个
    我的系统环境      Ubuntu 18.04     Python3.6     PyCharm 2018.3.2 community(免费版)     Java 1.8       安装前准备         由于众所周知的原因,安装中需要下载大量包,尽量处在科学上网的情况下安装。如果
目录 决策树博客园地址:https://www.cnblogs.com/chenyoude/ git 地址:https://github.com/nickcyd/machine_learning 决策树简介 决策树的构造信息增益 划分数据集 递归构建决策树 在 Python 中使用 Matplot
最近在工作之余学习NLP相关的知识,对word2vec的原理进行了研究。在本篇文章中,尝试使用TensorFlow自行构建、训练出一个word2vec模型,以强化学习效果,加深理解。   一.背景知识: 在深度学习实践中,传统的词汇表达方式是使用one-hot向量,其中,向量的维度等于词汇量的大小。
什么是多模态机器学习? 首先,什么叫做模态(Modality)呢? 每一种信息的来源或者形式,都可以称为一种模态。例如,人有触觉,听觉,视觉,嗅觉;信息的媒介,有语音、视频、文字等;多种多样的传感器,如雷达、红外、加速度计等。以上的每一种都可以称为一种模态。 同时,模态也可以有非常广泛的定义,比如我
来源:基金前20大重仓股持仓股排名 基金前15大重仓股持仓股排名 基金重仓前15大个股,相较于同期沪深300的平均收益,近1月:-1.05%,近3月:-0.49%,近6月:1.45%,近1年:3.92%,近3年:83.34%。 1,中国平安(SH601318
上一篇主要用了LR,SVM,DecisionTree三种模型进行预测。这一篇将用随机森林,GBDT,XGBoost,LightGBM四种模型解决这个问题。 所需的包的安装 这里需要我们去安装xgboost和lightgbm的包。这里我用的开发环境是VScode+anacoda。下面先安装xgboos
  K-近邻算法的直观理解就是:给定一个训练集合,对于新的实例,在训练集合中找到k个与该实例最近的邻居,然后根据“少数服从多数”原则判断该实例归属于哪一类,又称“随大流” K-近邻算法的三大要素:K值得选取,邻居距离度量,分类决策的制定。 (1)K值选取:通常采用交叉验证选取最优的K值(自己了解)