习题9.1

EM算法分为E步与M步

对于E步,计算期望。 (mu_j^{(i+1)} = frac{pi^{(i)}(p^{(i)})^{y_j}(1-p^{(i)})^{1-y_j}}{pi^{(i)}(p^{(i)})^{y_j}(1-p^{(i)})^{1-y_j} + (1 - pi^{(i)})(q^{(i)})^{y_j}(1-q^{(i)})^{1-y_j}})

对于M步,极大似然进行估计。 (pi^{(i+1)} = frac{1}{n} sum mu_j^{(i+1)})(p^{(i+1)} = frac{sum mu_j^{(i+1)}y_j}{sum mu_j^{(i+1)}})(q^{(i+1)} = frac{sum (1-mu_j^{(i+1)})y_j}{sum (1 - mu_j^{(i+1)})})

第一轮迭代

E步:观测值为1的 (mu^{(1)} = 0.4115) ,观测值为0的(mu^{(1)} = 0.5374)

M步:(pi^{(1)} = 0.4619)(p^{(1)} = 0.5346)(q^{(1)} = 0.6561)

第二轮迭代

E步:观测值为1的 (mu^{(2)} = 0.4116) ,观测值为0的(mu^{(2)} = 0.5374)

M步:(pi^{(2)} = 0.4619)(p^{(2)} = 0.5346)(q^{(2)} = 0.6561)

EM算法两轮收敛,得到参数的极大似然估计值。

(hat pi = 0.4619, hat p = 0.5346,hat q =0.6561)

习题9.2

引理9.2:若 (tilde P_{theta}(Z) = P(Z|Y,theta)) , 则 (F(tilde P, theta) = log P(Y|theta))

(F(tilde P, theta) = E_{tilde P}[logP(Y,Z|theta)] + H(tilde P) \ = E_{tilde P}[logP(Y,Z|theta)] - E_{tilde P} log tilde P(Z) \ =sum_Z tilde P_{theta}(Z) logP(Y,Z|theta) -sum_Z tilde P(Z) log tilde P(Z) \ =sum_Z P(Z|Y,theta) logP(Y,Z|theta) -sum_Z P(Z|Y,theta) log P(Z|Y,theta) \ =sum_Z P(Z|Y,theta) log frac{P(Y,Z|theta)}{P(Z|Y,theta)} \ = sum_Z P(Z|Y,theta) logP(Y|theta) = logP(Y|theta))

习题9.3

调用 sklearn.mixture.GaussianMixture 这个API进行训练,可得

(alpha_1 = 0.8668, mu_1 = 32.9849, sigma_1^2 = 429.4576)

(alpha_2 = 1- alpha_1 = 0.1332, mu_2 = -57.5111, sigma_2^2 = 90.2499)

习题9.4

Mixture of Naive Bayes Model(NBMM,混合朴素贝叶斯模型)

NBMM的EM算法

E步:(w_j^{(i)} = P(z^{(i)} =1|x^{(i)};phi_z,phi_{j|z^{(i)}=1},phi_{j|z^{(i)}=0}))

M步:(phi_{j|z^{(i)}=1} = frac{sum w^{(i)}I(x_j^{(i)}=1)}{sum w^{(i)}})(phi_{j|z^{(i)}=0} = frac{sum (1-w^{(i)})I(x_j^{(i)}=1)}{sum (1-w^{(i)})})(phi_{z^{(i)}} = frac{sum w^{(i)}}{m})

内容来源于网络如有侵权请私信删除

文章来源: 博客园

原文链接: https://www.cnblogs.com/cc-1029/p/15019649.html

你还没有登录,请先登录注册
  • 还没有人评论,欢迎说说您的想法!