结合fork.c文件分析进程创建的过程


本文为作业任务,只做浅显的分析,为大家提供一个分析的思路,很多细节都没有展示。如果想要更详细的分析请去搜索相关函数代码,博客园内有许多有用的信息供大家学习。

 

int nr_threads;
int nr_running;

int max_threads;
unsigned long total_forks;    /* Handle normal Linux uptimes. */
int last_pid;

struct task_struct *pidhash[PIDHASH_SZ];

 

文件开头定义了线程数量,进程数量,最大线程数,创建的进程总个数,最新的pid号以及存放pid号的哈希表。

void add_wait_queue(wait_queue_head_t *q, wait_queue_t * wait)
{
    unsigned long flags;

    wq_write_lock_irqsave(&q->lock, flags);
    wait->flags = 0;
    __add_wait_queue(q, wait);
    wq_write_unlock_irqrestore(&q->lock, flags);
}
void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t * wait)
{
unsigned long flags;

wq_write_lock_irqsave(&q->lock, flags);
wait->flags = WQ_FLAG_EXCLUSIVE;
__add_wait_queue_tail(q, wait);
wq_write_unlock_irqrestore(&q->lock, flags);
}
void remove_wait_queue(wait_queue_head_t *q, wait_queue_t * wait)
{
    unsigned long flags;

    wq_write_lock_irqsave(&q->lock, flags);
    __remove_wait_queue(q, wait);
    wq_write_unlock_irqrestore(&q->lock, flags);
}

 

这部分代码与进程的等待队列有关。Linux内核的等待队列是以双循环链表为基础数据结构,与进程调度机制紧密结合,能够用于实现核心的异步事件通知机制。等待队列在include/linux/wait.h中,这是一个通过list_head连接的典型双循环链表,在这个链表中,有两种数据结构:等待队列头(wait_queue_head_t)和等待队列项(wait_queue_t)。等待队列头和等待队列项中都包含一个list_head类型的域作为"连接件"。由于我们只需要对队列进行添加和删除操作,并不会修改其中的对象(等待队列项),因此,我们只需要提供一把保护整个基础设施和所有对象的锁,这把锁保存在等待队列头中,为wq_lock_t类型。在实现中,可以支持读写锁(rwlock)或自旋锁(spinlock)两种类型,通过一个宏定义来切换。如果使用读写锁,将wq_lock_t定义为rwlock_t类型;如果是自旋锁,将wq_lock_t定义为spinlock_t类型。无论哪种情况,分别相应设置wq_read_lock、wq_read_unlock、wq_read_lock_irqsave、wq_read_unlock_irqrestore、wq_write_lock_irq、wq_write_unlock、wq_write_lock_irqsave和wq_write_unlock_irqrestore等宏。在__wait_queue 中定义的WQ_FLAG_EXCLUSIVE表示节点对应的进程对临界资源具有排他性。remove_wait_queue函数用于将等待队列项wait从以q为等待队列头的等待队列中移除

 

void __init fork_init(unsigned long mempages)

{

    /*

     * The default maximum number of threads is set to a safe

     * value: the thread structures can take up at most half

     * of memory.

     */

    max_threads = mempages / (THREAD_SIZE/PAGE_SIZE) / 2;

 

    init_task.rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;

    init_task.rlim[RLIMIT_NPROC].rlim_max = max_threads/2;

}

 

 

如注释所说,默认的最大线程数被设置为一个安全值:线程结构最多可以占用一半的内存。__init在include/linux/wait.h中,作用为将带有__init标识符的函数划分到.init.text段中,此段只在启动时做一次初始化载入。

/* Protects next_safe and last_pid. */

spinlock_t lastpid_lock = SPIN_LOCK_UNLOCKED;

 

static int get_pid(unsigned long flags)

{

    static int next_safe = PID_MAX;

    struct task_struct *p;

 

    if (flags & CLONE_PID)

        return current->pid;

 

    spin_lock(&lastpid_lock);

    if((++last_pid) & 0xffff8000) {

        last_pid = 300;      /* Skip daemons etc. */

        goto inside;

    }

    if(last_pid >= next_safe) {

inside:

        next_safe = PID_MAX;

        read_lock(&tasklist_lock);

    repeat:

        for_each_task(p) {

            if(p->pid == last_pid ||

               p->pgrp == last_pid ||

               p->session == last_pid) {

                if(++last_pid >= next_safe) {

                    if(last_pid & 0xffff8000)

                        last_pid = 300;

                    next_safe = PID_MAX;

                }

                goto repeat;

            }

            if(p->pid > last_pid && next_safe > p->pid)

                next_safe = p->pid;

            if(p->pgrp > last_pid && next_safe > p->pgrp)

                next_safe = p->pgrp;

            if(p->session > last_pid && next_safe > p->session)

                next_safe = p->session;

        }

        read_unlock(&tasklist_lock);

    }

    spin_unlock(&lastpid_lock);

 

    return last_pid;

}

 

这部分代码用来给进程分配pid,对get_pid函数添加自旋锁保证函数的运行,对tasklist_lock添加读锁,确保pid数据安全。last_pid用于记录上一次分配给进程时的pid值。分配的pid一般而言是last_pid+1,如果超出进程个数的最大值(0xffff8000),那么进程pid值从300开始重新查找未用的。也就是说,一般用户进程的pid值范围[300,ffff8000]。(0~299,留给系统)。变量next_safe的含义是,在[last_pid,next_safe]之间,都是没有使用过的pid,一旦last_pid+1大于了next_safe,也就是说pid值进入了不可靠空间,有可能这个值被使用,这时需要遍历task来确认。这样遍历task找到一个没有用过的pid,同时确定next_safe,以保证next_safe到last_pid的区间中pid是空闲的,这样只要再次分配pid时,其值小于next_safe就可以直接分配,而不需要遍历task来查找空闲的pid。

 

static inline int dup_mmap(struct mm_struct * mm)

{

    struct vm_area_struct * mpnt, *tmp, **pprev;

    int retval;

 

    flush_cache_mm(current->mm);

    mm->locked_vm = 0;

    mm->mmap = NULL;

    mm->mmap_avl = NULL;

    mm->mmap_cache = NULL;

    mm->map_count = 0;

    mm->cpu_vm_mask = 0;

    mm->swap_cnt = 0;

    mm->swap_address = 0;

    pprev = &mm->mmap;

    for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {

        struct file *file;

 

        retval = -ENOMEM;

        if(mpnt->vm_flags & VM_DONTCOPY)

            continue;

        tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);

        if (!tmp)

            goto fail_nomem;

        *tmp = *mpnt;

        tmp->vm_flags &= ~VM_LOCKED;

        tmp->vm_mm = mm;

        mm->map_count++;

        tmp->vm_next = NULL;

        file = tmp->vm_file;

        if (file) {

            struct inode *inode = file->f_dentry->d_inode;

            get_file(file);

            if (tmp->vm_flags & VM_DENYWRITE)

                atomic_dec(&inode->i_writecount);

     

            /* insert tmp into the share list, just after mpnt */

            spin_lock(&inode->i_mapping->i_shared_lock);

            if((tmp->vm_next_share = mpnt->vm_next_share) != NULL)

                mpnt->vm_next_share->vm_pprev_share =

                    &tmp->vm_next_share;

            mpnt->vm_next_share = tmp;

            tmp->vm_pprev_share = &mpnt->vm_next_share;

            spin_unlock(&inode->i_mapping->i_shared_lock);

        }

 

        /* Copy the pages, but defer checking for errors */

        retval = copy_page_range(mm, current->mm, tmp);

        if (!retval && tmp->vm_ops && tmp->vm_ops->open)

            tmp->vm_ops->open(tmp);

 

        /*

         * Link in the new vma even if an error occurred,

         * so that exit_mmap() can clean up the mess.

         */

        *pprev = tmp;

        pprev = &tmp->vm_next;

 

        if (retval)

            goto fail_nomem;

    }

    retval = 0;

    if (mm->map_count >= AVL_MIN_MAP_COUNT)

        build_mmap_avl(mm);

 

fail_nomem:

    flush_tlb_mm(current->mm);

    return retval;

}

 

spinlock_t mmlist_lock __cacheline_aligned = SPIN_LOCK_UNLOCKED;

 

#define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))

#define free_mm(mm)  (kmem_cache_free(mm_cachep, (mm)))

 

static struct mm_struct * mm_init(struct mm_struct * mm)

{

    atomic_set(&mm->mm_users, 1);

    atomic_set(&mm->mm_count, 1);

    init_MUTEX(&mm->mmap_sem);

    mm->page_table_lock = SPIN_LOCK_UNLOCKED;

    mm->pgd = pgd_alloc();

    if (mm->pgd)

        return mm;

    free_mm(mm);

    return NULL;

}

   

 

/*

 * Allocate and initialize an mm_struct.

 */

struct mm_struct * mm_alloc(void)

{

    struct mm_struct * mm;

 

    mm = allocate_mm();

    if (mm) {

        memset(mm, 0, sizeof(*mm));

        return mm_init(mm);

    }

    return NULL;

}

 

/*

 * Called when the last reference to the mm

 * is dropped: either by a lazy thread or by

 * mmput. Free the page directory and the mm.

 */

inline void __mmdrop(struct mm_struct *mm)

{

    if (mm == &init_mm) BUG();

    pgd_free(mm->pgd);

    destroy_context(mm);

    free_mm(mm);

}

 

/*

 * Decrement the use count and release all resources for an mm.

 */

void mmput(struct mm_struct *mm)

{

    if (atomic_dec_and_lock(&mm->mm_users, &mmlist_lock)) {

        list_del(&mm->mmlist);

        spin_unlock(&mmlist_lock);

        exit_mmap(mm);

        mmdrop(mm);

    }

}

 

void mm_release(void)

{

    struct task_struct *tsk = current;

 

    /* notify parent sleeping on vfork() */

    if (tsk->flags & PF_VFORK) {

        tsk->flags &= ~PF_VFORK;

        up(tsk->p_opptr->vfork_sem);

    }

}

 

这部分代码为内存管理部分,代码中的注释向我们大致说明了本段代码的功能。

Linux内核通过一个被称为进程描述符的task_struct结构体来管理进程,这个结构体包含了一个进程所需的所有信息。它定义在include/linux/sched.h文件中。每一个进程都会有自己独立的mm_struct,这样每一个进程都会有自己独立的地址空间,这样才能互不干扰。在地址空间中,mmap为地址空间的内存区域(用vm_area_struct结构来表示)链表,表示起来更加方便。mm_struct的结构描述了进程的用户空间的结构,定义了用户空间的段分布:数据段,代码段,堆栈段。其中pgd_t是该进程用户空间地址映射到物理地址时使用vm_area_struct是进程用户空间已映射到物理空间的虚拟地址区间,定义在/include/linux/mm.h。mmap是该空间区块组成的链表。vm_flag是描述对虚拟区间的操作的标志。

 

 

static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)

{

    struct mm_struct * mm, *oldmm;

    int retval;

 

    tsk->min_flt = tsk->maj_flt = 0;

    tsk->cmin_flt = tsk->cmaj_flt = 0;

    tsk->nswap = tsk->cnswap = 0;

 

    tsk->mm = NULL;

    tsk->active_mm = NULL;

 

    /*

     * Are we cloning a kernel thread?

     *

     * We need to steal a active VM for that..

     */

    oldmm = current->mm;

    if (!oldmm)

        return 0;

 

    if (clone_flags & CLONE_VM) {

        atomic_inc(&oldmm->mm_users);

        mm = oldmm;

        goto good_mm;

    }

 

    retval = -ENOMEM;

    mm = allocate_mm();

    if (!mm)

        goto fail_nomem;

 

    /* Copy the current MM stuff.. */

    memcpy(mm, oldmm, sizeof(*mm));

    if (!mm_init(mm))

        goto fail_nomem;

 

    down(&oldmm->mmap_sem);

    retval = dup_mmap(mm);

    up(&oldmm->mmap_sem);

 

    /*

     * Add it to the mmlist after the parent.

     *

     * Doing it this way means that we can order

     * the list, and fork() won't mess up the

     * ordering significantly.

     */

    spin_lock(&mmlist_lock);

    list_add(&mm->mmlist, &oldmm->mmlist);

    spin_unlock(&mmlist_lock);

 

    if (retval)

        goto free_pt;

 

    /*

     * child gets a private LDT (if there was an LDT in the parent)

     */

    copy_segments(tsk, mm);

 

    if (init_new_context(tsk,mm))

        goto free_pt;

 

good_mm:

    tsk->mm = mm;

    tsk->active_mm = mm;

    return 0;

 

free_pt:

    mmput(mm);

fail_nomem:

    return retval;

}

 

static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)

{

    struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);

    /* We don't need to lock fs - think why ;-) */

    if (fs) {

        atomic_set(&fs->count, 1);

        fs->lock = RW_LOCK_UNLOCKED;

        fs->umask = old->umask;

        read_lock(&old->lock);

        fs->rootmnt = mntget(old->rootmnt);

        fs->root = dget(old->root);

        fs->pwdmnt = mntget(old->pwdmnt);

        fs->pwd = dget(old->pwd);

        if (old->altroot) {

            fs->altrootmnt = mntget(old->altrootmnt);

            fs->altroot = dget(old->altroot);

        } else {

            fs->altrootmnt = NULL;

            fs->altroot = NULL;

        }  

        read_unlock(&old->lock);

    }

    return fs;

}

 

struct fs_struct *copy_fs_struct(struct fs_struct *old)

{

    return __copy_fs_struct(old);

}

 

static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)

{

    if (clone_flags & CLONE_FS) {

        atomic_inc(&current->fs->count);

        return 0;

    }

    tsk->fs = __copy_fs_struct(current->fs);

    if (!tsk->fs)

        return -1;

    return 0;

}

 

static int count_open_files(struct files_struct *files, int size)

{

    int i;

   

    /* Find the last open fd */

    for (i = size/(8*sizeof(long)); i > 0; ) {

        if (files->open_fds->fds_bits[--i])

            break;

    }

    i = (i+1) * 8 * sizeof(long);

    return i;

}

 

static int copy_files(unsigned long clone_flags, struct task_struct * tsk)

{

    struct files_struct *oldf, *newf;

    struct file **old_fds, **new_fds;

    int open_files, nfds, size, i, error = 0;

 

    /*

     * A background process may not have any files ...

     */

    oldf = current->files;

    if (!oldf)

        goto out;

 

    if (clone_flags & CLONE_FILES) {

        atomic_inc(&oldf->count);

        goto out;

    }

 

    tsk->files = NULL;

    error = -ENOMEM;

    newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);

    if (!newf)

        goto out;

 

    atomic_set(&newf->count, 1);

 

    newf->file_lock      = RW_LOCK_UNLOCKED;

    newf->next_fd     = 0;

    newf->max_fds     = NR_OPEN_DEFAULT;

    newf->max_fdset      = __FD_SETSIZE;

    newf->close_on_exec = &newf->close_on_exec_init;

    newf->open_fds       = &newf->open_fds_init;

    newf->fd     = &newf->fd_array[0];

 

    /* We don't yet have the oldf readlock, but even if the old

           fdset gets grown now, we'll only copy up to "size" fds */

    size = oldf->max_fdset;

    if (size > __FD_SETSIZE) {

        newf->max_fdset = 0;

        write_lock(&newf->file_lock);

        error = expand_fdset(newf, size);

        write_unlock(&newf->file_lock);

        if (error)

            goto out_release;

    }

    read_lock(&oldf->file_lock);

 

    open_files = count_open_files(oldf, size);

 

    /*

     * Check whether we need to allocate a larger fd array.

     * Note: we're not a clone task, so the open count won't

     * change.

     */

    nfds = NR_OPEN_DEFAULT;

    if (open_files > nfds) {

        read_unlock(&oldf->file_lock);

        newf->max_fds = 0;

        write_lock(&newf->file_lock);

        error = expand_fd_array(newf, open_files);

        write_unlock(&newf->file_lock);

        if (error)

            goto out_release;

        nfds = newf->max_fds;

        read_lock(&oldf->file_lock);

    }

 

    old_fds = oldf->fd;

    new_fds = newf->fd;

 

    memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);

    memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);

 

    for (i = open_files; i != 0; i--) {

        struct file *f = *old_fds++;

        if (f)

            get_file(f);

        *new_fds++ = f;

    }

    read_unlock(&oldf->file_lock);

 

    /* compute the remainder to be cleared */

    size = (newf->max_fds - open_files) * sizeof(struct file *);

 

    /* This is long word aligned thus could use a optimized version */

    memset(new_fds, 0, size);

 

    if (newf->max_fdset > open_files) {

        int left = (newf->max_fdset-open_files)/8;

        int start = open_files / (8 * sizeof(unsigned long));

       

        memset(&newf->open_fds->fds_bits[start], 0, left);

        memset(&newf->close_on_exec->fds_bits[start], 0, left);

    }

 

    tsk->files = newf;

    error = 0;

out:

    return error;

 

out_release:

    free_fdset (newf->close_on_exec, newf->max_fdset);

    free_fdset (newf->open_fds, newf->max_fdset);

    kmem_cache_free(files_cachep, newf);

    goto out;

}

 

static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)

{

    struct signal_struct *sig;

 

    if (clone_flags & CLONE_SIGHAND) {

        atomic_inc(&current->sig->count);

        return 0;

    }

    sig = kmem_cache_alloc(sigact_cachep, GFP_KERNEL);

    tsk->sig = sig;

    if (!sig)

        return -1;

    spin_lock_init(&sig->siglock);

    atomic_set(&sig->count, 1);

    memcpy(tsk->sig->action, current->sig->action, sizeof(tsk->sig->action));

    return 0;

}

 

static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)

{

    unsigned long new_flags = p->flags;

 

    new_flags &= ~(PF_SUPERPRIV | PF_USEDFPU | PF_VFORK);

    new_flags |= PF_FORKNOEXEC;

    if (!(clone_flags & CLONE_PTRACE))

        p->ptrace = 0;

    if (clone_flags & CLONE_VFORK)

        new_flags |= PF_VFORK;

    p->flags = new_flags;

}

 

父进程中在调用fork()派生新进程,实际上相当于创建了进程的一个拷贝;复制出来的子进程有自己的 task_struct结构和系统空间堆栈,但与父进程共享其他所有的资源。Linux为此提供了两个系统调用,一个是fork(),另一个是clone()。我们现在主要讨论fork()。fork()是全部复制,父进程所需的资源全部通过数据结构的复制传递给子进程,而完成这一操作的函数定义就是上方所写的代码段。调用fork时,内核会在copy_mm函数中处理子进程的mm_struct,在copy_files函数中处理拷贝父进程打开的文件的相关事宜,在copy_fs中记录进程所在文件系统的根目录和当前目录信息, copy_sighand中复制进程对信号的处理方式。

/*

 *  Ok, this is the main fork-routine. It copies the system process

 * information (task[nr]) and sets up the necessary registers. It also

 * copies the data segment in its entirety.  The "stack_start" and

 * "stack_top" arguments are simply passed along to the platform

 * specific copy_thread() routine.  Most platforms ignore stack_top.

 * For an example that's using stack_top, see

 * arch/ia64/kernel/process.c.

 */

int do_fork(unsigned long clone_flags, unsigned long stack_start,struct pt_regs *regs, unsigned long stack_size)

{

    int retval = -ENOMEM;

    struct task_struct *p;

    DECLARE_MUTEX_LOCKED(sem);

 

    if (clone_flags & CLONE_PID) {

        /* This is only allowed from the boot up thread */

        if (current->pid)

            return -EPERM;

    }

   

    current->vfork_sem = &sem;

 

    p = alloc_task_struct();

    if (!p)

        goto fork_out;

 

    *p = *current;

 

    retval = -EAGAIN;

    if (atomic_read(&p->user->processes) >= p->rlim[RLIMIT_NPROC].rlim_cur)

        goto bad_fork_free;

    atomic_inc(&p->user->__count);

    atomic_inc(&p->user->processes);

 

    /*

     * Counter increases are protected by

     * the kernel lock so nr_threads can't

     * increase under us (but it may decrease).

     */

    if (nr_threads >= max_threads)

        goto bad_fork_cleanup_count;

   

    get_exec_domain(p->exec_domain);

 

    if (p->binfmt && p->binfmt->module)

        __MOD_INC_USE_COUNT(p->binfmt->module);

 

    p->did_exec = 0;

    p->swappable = 0;

    p->state = TASK_UNINTERRUPTIBLE;

 

    copy_flags(clone_flags, p);

    p->pid = get_pid(clone_flags);

 

    p->run_list.next = NULL;

    p->run_list.prev = NULL;

 

    if ((clone_flags & CLONE_VFORK) || !(clone_flags & CLONE_PARENT)) {

        p->p_opptr = current;

        if (!(p->ptrace & PT_PTRACED))

            p->p_pptr = current;

    }

    p->p_cptr = NULL;

    init_waitqueue_head(&p->wait_chldexit);

    p->vfork_sem = NULL;

    spin_lock_init(&p->alloc_lock);

 

    p->sigpending = 0;

    init_sigpending(&p->pending);

 

    p->it_real_value = p->it_virt_value = p->it_prof_value = 0;

    p->it_real_incr = p->it_virt_incr = p->it_prof_incr = 0;

    init_timer(&p->real_timer);

    p->real_timer.data = (unsigned long) p;

 

    p->leader = 0;       /* session leadership doesn't inherit */

    p->tty_old_pgrp = 0;

    p->times.tms_utime = p->times.tms_stime = 0;

    p->times.tms_cutime = p->times.tms_cstime = 0;

#ifdef CONFIG_SMP

    {

        int i;

        p->has_cpu = 0;

        p->processor = current->processor;

        /* ?? should we just memset this ?? */

        for(i = 0; i < smp_num_cpus; i++)

            p->per_cpu_utime[i] = p->per_cpu_stime[i] = 0;

        spin_lock_init(&p->sigmask_lock);

    }

#endif

    p->lock_depth = -1;       /* -1 = no lock */

    p->start_time = jiffies;

 

    retval = -ENOMEM;

    /* copy all the process information */

    if (copy_files(clone_flags, p))

        goto bad_fork_cleanup;

    if (copy_fs(clone_flags, p))

        goto bad_fork_cleanup_files;

    if (copy_sighand(clone_flags, p))

        goto bad_fork_cleanup_fs;

    if (copy_mm(clone_flags, p))

        goto bad_fork_cleanup_sighand;

    retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);

    if (retval)

        goto bad_fork_cleanup_sighand;

    p->semundo = NULL;

   

    /* Our parent execution domain becomes current domain

       These must match for thread signalling to apply */

      

    p->parent_exec_id = p->self_exec_id;

 

    /* ok, now we should be set up.. */

    p->swappable = 1;

    p->exit_signal = clone_flags & CSIGNAL;

    p->pdeath_signal = 0;

 

    /*

     * "share" dynamic priority between parent and child, thus the

     * total amount of dynamic priorities in the system doesnt change,

     * more scheduling fairness. This is only important in the first

     * timeslice, on the long run the scheduling behaviour is unchanged.

     */

    p->counter = (current->counter + 1) >> 1;

    current->counter >>= 1;

    if (!current->counter)

        current->need_resched = 1;

 

    /*

     * Ok, add it to the run-queues and make it

     * visible to the rest of the system.

     *

     * Let it rip!

     */

    retval = p->pid;

    p->tgid = retval;

    INIT_LIST_HEAD(&p->thread_group);

    write_lock_irq(&tasklist_lock);

    if (clone_flags & CLONE_THREAD) {

        p->tgid = current->tgid;

        list_add(&p->thread_group, &current->thread_group);

    }

    SET_LINKS(p);

    hash_pid(p);

    nr_threads++;

    write_unlock_irq(&tasklist_lock);

 

    if (p->ptrace & PT_PTRACED)

        send_sig(SIGSTOP, p, 1);

 

    wake_up_process(p);      /* do this last */

    ++total_forks;

 

fork_out:

    if ((clone_flags & CLONE_VFORK) && (retval > 0))

        down(&sem);

    return retval;

 

bad_fork_cleanup_sighand:

    exit_sighand(p);

bad_fork_cleanup_fs:

    exit_fs(p); /* blocking */

bad_fork_cleanup_files:

    exit_files(p); /* blocking */

bad_fork_cleanup:

    put_exec_domain(p->exec_domain);

    if (p->binfmt && p->binfmt->module)

        __MOD_DEC_USE_COUNT(p->binfmt->module);

bad_fork_cleanup_count:

    atomic_dec(&p->user->processes);

    free_uid(p->user);

bad_fork_free:

    free_task_struct(p);

    goto fork_out;

}

 

如开头注释第一句所说,这部分代码是fork.c中最主要的函数。

do_fork首先进行一些参数及权限的检查,仅允许从线程启动。之后进行内存的分配,复制父进程的task_struct。判断进程数量,将从父进程中继承的task_struct初始化,获取新的pid,分配CPU,解锁后设定运行时间。将子进程的pid放入pidhash表中,就可以唤醒子进程了。代码中间部分有设置进程判断,若发现非法进程会直接清理掉。清理函数在代码尾部定义。

 

/* SLAB cache for signal_struct structures (tsk->sig) */

kmem_cache_t *sigact_cachep;

 

/* SLAB cache for files_struct structures (tsk->files) */

kmem_cache_t *files_cachep;

 

/* SLAB cache for fs_struct structures (tsk->fs) */

kmem_cache_t *fs_cachep;

 

/* SLAB cache for vm_area_struct structures */

kmem_cache_t *vm_area_cachep;

 

/* SLAB cache for mm_struct structures (tsk->mm) */

kmem_cache_t *mm_cachep;

 

void __init proc_caches_init(void)

{

    sigact_cachep = kmem_cache_create("signal_act",

            sizeof(struct signal_struct), 0,

            SLAB_HWCACHE_ALIGN, NULL, NULL);

    if (!sigact_cachep)

        panic("Cannot create signal action SLAB cache");

 

    files_cachep = kmem_cache_create("files_cache",

             sizeof(struct files_struct), 0,

             SLAB_HWCACHE_ALIGN, NULL, NULL);

    if (!files_cachep)

        panic("Cannot create files SLAB cache");

 

    fs_cachep = kmem_cache_create("fs_cache",

             sizeof(struct fs_struct), 0,

             SLAB_HWCACHE_ALIGN, NULL, NULL);

    if (!fs_cachep)

        panic("Cannot create fs_struct SLAB cache");

 

    vm_area_cachep = kmem_cache_create("vm_area_struct",

            sizeof(struct vm_area_struct), 0,

            SLAB_HWCACHE_ALIGN, NULL, NULL);

    if(!vm_area_cachep)

        panic("vma_init: Cannot alloc vm_area_struct SLAB cache");

 

    mm_cachep = kmem_cache_create("mm_struct",

            sizeof(struct mm_struct), 0,

            SLAB_HWCACHE_ALIGN, NULL, NULL);

    if(!mm_cachep)

        panic("vma_init: Cannot alloc mm_struct SLAB cache");

}

 

最后这部分代码作用是处理进程的缓存,为proc文件系统创建高速缓冲。

 

 

从文件开头的宏定义,到等待队列的处理,到线程数的安全处理,到pid的分配,到进程的内存管理,到父进程复制出子进程。fork()函数中对进程的创建大致是以上步骤。主要在于copy部分对task_struct复制和复制后的初始化。

 

内容来源于网络如有侵权请私信删除

文章来源: 博客园

原文链接: https://www.cnblogs.com/wxy1567/p/14806603.html

你还没有登录,请先登录注册
  • 还没有人评论,欢迎说说您的想法!