2019-ACM-ICPC-南京区网络赛-E. K Sum-杜教筛+欧拉定理


【Problem Description】

(f_n(k)=sum_{l_1=1}^nsum_{l_2=1}^ndotssum_{l_k=1}^n gcd(l_1,l_2,dots,l_k))。求(sum_{i=2}^kf_n(i) mod (10^9+7))

【Solution】

对于(f_n(k))有:
[ sum_{l_1=1}^nsum_{l_2=1}^ndotssum_{l_k=1}^ngcd(l_1,l_2,dots,l_k)=sum_{d=1}^nsum_{l_1=1}^{frac{n}{d}}sum_{l_2=1}^{frac{n}{d}}dotssum_{l_k=1}^{frac{n}{d}}[gcd(l_1,l_2,dots,l_k)=1]cdot d^2 \=sum_{d=1}^nd^2sum_{t=1}^{n}mu(t)sum_{l_1=1}^{frac{n}{dt}}sum_{l_2=1}^{frac{n}{dt}}dotssum_{l_k=1}^{frac{n}{dt}}=sum_{d=1}^nd^2sum_{t=1}^nmu(t)lfloorfrac{n}{dt}rfloor^k ]
(T=dt)得:
[ f_n(k)=sum_{T=1}^{n}sum_{t|T}mu(t)cdotfrac{T^2}{t^2}cdot lfloorfrac{n}{T}rfloor^k ]
(sum_{i=2}^kf_n(i))为:
[ sum_{i=2}^kf_n(i)=sum_{i=2}^ksum_{T=1}^nsum_{t|T}mu(t)cdot frac{T^2}{t^2}cdot lfloorfrac{n}{T}rfloor^k=sum_{T=1}^nsum_{t|T}mu(t)frac{T^2}{t^2}sum_{i=2}^klfloorfrac{n}{T}rfloor^k \=sum_{T=1}^nsum_{t|T}mu(t)frac{T^2}{t^2}Big(frac{lfloorfrac{n}{T}rfloor^{k+1}-1}{lfloorfrac{n}{T}rfloor-1}-lfloorfrac{n}{T}rfloor-1Big) ]
因为(kle 10^{10^5}),所以用欧拉定理降幂取模即可。注意特判(lfloor frac{n}{T}rfloor=1)的情况。
其中令(g(T)=sum_{t|T}mu(t)cdot frac{T^2}{t^2},Phi(n)=sum_{T=1}^ng(T))。对于(T)小的部分可以通过线性筛求得:

  1. (T)为素数时,(g(T)=T^2-1)
  2. (T)中无平方质因子时(T=p_1cdot p_2dots p_k),因为(g(T))为积形函数,则有(g(T)=g(p_1)cdot g(p_2)dots g(p_k))
  3. (T)中有平方质因子时,有(g(Tcdot p)=g(T)cdot p^2)
    对于(T)大的部分,我们发现(g(T)=mu*id^2(T)),则(g*I(T)=mu*I*id^2(T)=e*id^2(T)=id^2(T)=T^2)
    则有:
    [ sum_{T=1}^nT^2=sum_{T=1}^nsum_{d|T}g(d)=sum_{T=1}^nsum_{d|T}sum_{t|d}mu(t)cdot frac{d^2}{t^2}=sum_{T=1}^nsum_{d=1}^{frac{n}{T}}sum_{t|d}mu(t)cdotfrac{d^2}{t^2} \=sum_{T=1}^nPhi(frac{n}{T}),则Phi(n)=frac{ncdot (n+1)cdot (2cdot n+1)}{6}-sum_{T=2}^nPhi(frac{n}{T}) ]

【Code】

/*
 * @Author: Simon 
 * @Date: 2019-09-04 15:07:56 
 * @Last Modified by: Simon
 * @Last Modified time: 2019-09-04 16:22:26
 */
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define maxn 1000005
typedef long long ll;
const int mod=1e9+7;
const int Mod=3e6;
int prime[maxn],cnt=0,inv6;
ll phi[maxn],sum[maxn];
bool vis[maxn]={1,1};
void Euler(){ //线性筛
    phi[1]=1;
    for(int i=2;i<maxn;i++){
        if(!vis[i]){
            prime[++cnt]=i;
            phi[i]=((i*1LL*i%mod-1)%mod+mod)%mod;
        }
        for(int j=1;j<=cnt&&i*1LL*prime[j]<maxn;j++){
            vis[i*prime[j]]=1;
            if(i%prime[j]==0){
                phi[i*prime[j]]=phi[i]*1LL*prime[j]%mod*prime[j]%mod;
                break;
            }
            phi[i*prime[j]]=phi[i]*1LL*phi[prime[j]];
        }
    }
    for(int i=1;i<maxn;i++) sum[i]=(sum[i-1]+phi[i])%mod;
}
int fpow(int a,int b,int mod){
    a%=mod; int ans=1;
    while(b){
        if(b&1) ans=1LL*ans*a%mod;
        a=1LL*a*a%mod;
        b>>=1;
    }
    return ans;
}
unordered_map<ll,ll>mp;
int cal(int n,int k1,int k2){ //等比数列求和公式
    if(n==1) return (k2-1)%mod; //特判
    int t1=fpow(n,k1+1,mod)-1LL*n*n%mod,t2=n-1;
    return 1LL*t1*fpow(t2,mod-2,mod)%mod;
}
int sum_2(int n){
    n%=mod;
    return 1LL*n%mod*(n+1)%mod*(2*n+1)%mod*inv6%mod;
}
int dfs(int n){ //Phi(n)
    if(n<maxn) return sum[n];
    if(mp[n]) return mp[n];
    int sum=0;
    for(int i=2,j;i<=n;i=j+1){
        j=n/(n/i);
        sum=(sum+(j-i+1)*1LL*dfs(n/i)%mod)%mod;
    }
    sum=(sum_2(n)-sum)%mod;
    mp[n]=sum;
    return sum;
}
int main(){
#ifndef ONLINE_JUDGE
    //freopen("input.in","r",stdin);
    //freopen("output.out","w",stdout);
#endif
    ios::sync_with_stdio(false);
    cin.tie(0);Euler(); inv6=fpow(6,mod-2,mod);
    int T;cin>>T;
    while(T--){
        mp.clear();
        int n;string k;cin>>n>>k;
        int t1=0,t2=0;
        for(int i=0;i<k.size();i++){
            t1=(1LL*t1*10+(k[i]-'0'))%(mod-1);
            t2=(1LL*t2*10+(k[i]-'0'))%mod;
        }
        int ans=0;
        for(int i=1,j;i<=n;i=j+1){
            j=n/(n/i);
            ans=(ans*1LL+(dfs(j)-dfs(i-1))%mod*1LL*cal(n/i,t1,t2)%mod)%mod;
        }
        cout<<(ans+mod)%mod<<endl;
    }
#ifndef ONLINE_JUDGE
    cout<<endl;system("pause");
#endif
    return 0;
}
内容来源于网络如有侵权请私信删除
你还没有登录,请先登录注册
  • 还没有人评论,欢迎说说您的想法!