1. 幂迭代算法(简称幂法)

(1) 占优特征值和占优特征向量

已知方阵(bm{A} in R^{n times n}), (bm{A})的占优特征值是比(bm{A})的其他特征值(的绝对值)都大的特征值(lambda),若这样的特征值存在,则与(lambda)相关的特征向量我们称为占优特征向量。

(2) 占优特征值和占优特征向量的性质

如果一个向量反复与同一个矩阵相乘,那么该向量会被推向该矩阵的占优特征向量的方向。如下面这个例子所示:

import numpy as np
def prime_eigen(A, x, k):
    x_t = x.copy()
    for j in range(k):
        x_t = A.dot(x_t)
    return x_t   
if __name__ == '__main__':
    A = np.array(
        [
            [1, 3],
            [2, 2]
        ]
    )
    x = np.array([-5, 5])
    k = 4
    r = prime_eigen(A, x, k)
    print(r)

该算法运行结果如下:

250, 260

为什么会出现这种情况呢?因为对(forall bm{x} in R^{n})都可以表示为(A)所有特征向量的线性组合(假设所有特征向量张成(R^n)空间)。我们设(bm{x}^{(0)} = (-5, 5)^T),则幂迭代的过程可以如下表示:

[begin{aligned} & bm{x}^{(1)} = bm{A}bm{x}^{(0)} = 4(1,1)^T - 2(-3, 2)^T\ & bm{x}^{(2)} = bm{A}^2bm{x}^{(0)} = 4^2(1, 1)^T + 2(-3, 2)^T\ & ...\ & bm{x}^{(4)} = bm{A}^4bm{x}^{(0)} = 4^4(1, 1)^T + 2(-3, 2)^T = 256(1, 1)^T + 2(-3, 2)^T\ end{aligned} tag{1} ]

可以看出是和占优特征值对应的特征向量在多次计算后会占优。在这里4是最大的特征值,而计算就越来越接近占优特征向量((1, 1)^T)的方向。
不过这样重复与矩阵连乘和容易导致数值上溢,我们必须要在每步中对向量进行归一化。就这样,归一化和与矩阵(bm{A})的连乘构成了如下所示的幂迭代算法:

import numpy as np
def powerit(A, x, k):
    for j in range(k):
        # 每次迭代前先对上一轮的x进行归一化
        u = x/np.linalg.norm(x)
        # 计算本轮迭代未归一化的x
        x = A.dot(u)
        # 计算出本轮对应的特征值
        lam = u.dot(x)
    # 最后一次迭代得到的特征向量x需要归一化为u
    u = x / np.linalg.norm(x)
    return u, lam        

if __name__ == '__main__':
    A = np.array(
        [
            [1, 3],
            [2, 2]
        ]
    )
    x = np.array([-5, 5])
    k = 10
    # 返回占优特征值和对应的特征向量
    u, lam = powerit(A, x, k)
    print("占优的特征向量:n", u)
    print("占优的特征值:n", lam)

算法运行结果如下:

占优的特征向量:
 [0.70710341 0.70711015]
占优的特征值:
 3.9999809247674625

观察上面的代码,我们在第(t)轮迭代的第一行,得到的是归一化后的第(t-1)轮迭代的特征向量近似值(bm{u}^{(t-1)})(想一想,为什么),然后按照(bm{x}^{(t)} = bm{A}bm{u}^{(t-1)})计算出第(t)轮迭代未归一化的特征向量近似值(bm{x}^{(t)}),需要计算出第(t)轮迭代对应的特征值。这里我们我们直接直接运用了结论(lambda^{(t)} = (bm{u}^{(t-1)})^T bm{x^{(t)}})。该结论的推导如下:

证明


对于第(t)轮迭代,其中特征值的近似未(bm{lambda}^{(t)}),我们想解特征方程

[bm{x^{(t-1)}} cdot lambda^{(t)} = bm{A}bm{x}^{(t-1)} tag{2} ]

以得到第(t)轮迭代时该特征向量对应的特征值(lambda^{(t)})。我们采用最小二乘法求方程((2))的近似解。我们可以写出该最小二乘问题的正规方程为

[(bm{x}^{(t-1)})^Tbm{x}^{(t-1)} cdot lambda^{(t-1)} = (bm{x}^{(t-1)})^T (bm{A}bm{x}^{(t-1)}) tag{3} ]

然而我们可以写出该最小二乘问题的解为

[lambda^{(t)} = frac{(bm{x}^{(t-1)})^Tbm{A}bm{x}^{(t-1)}}{(bm{x}^{(t-1)})^Tbm{x}^{(t-1)}} tag{4} ]

式子((4))就是瑞利(Rayleigh)商。给定特征向量的近似,瑞利商式特征值的最优近似。又由归一化的定义有

[bm{u}^{(t-1)} = frac{bm{x}^{(t-1)}}{||bm{x}^{(t-1)}||} = frac{bm{x}^{(t-1)}}{{[(bm{x}^{(t-1)})^Tbm{x}^{(t-1)}]}^{frac{1}{2}}} tag{5} ]

则我们可以将式((4))写作:

[lambda^{(t)} = (bm{u}^{(t-1)})^Tbm{A}bm{u}^{(t-1)} tag{6} ]

又因为前面已经计算出(bm{x}^{(t)} = bm{A} bm{u}^{(t-1)}),为了避免重复计算,我们将(bm{x}^{(t)})代入式((5))得到:

[lambda^{(t)} = (bm{u}^{(t-1)})^Tbm{x}^{(t)} tag{7} ]

证毕。


可以看出,幂迭代本质上每步进行归一化的不动点迭代。

2. 逆向幂迭代

上面我们的幂迭代算法用于求解(绝对值)最大的特征值。那么如何求最小的特征值呢?我们只需要将幂迭代用于矩阵的逆即可。

我们有结论,矩阵(bm{A}^{-1})的最大特征值就是矩阵(bm{A})的最小特征值的倒数。事实上,对矩阵(bm{A} in R^{n times n}) ,令其特征值表示为(lambda_1, lambda_2, ..., lambda_n),如果其逆矩阵存在,则逆矩阵(A)的特征值为(lambda_1^{-1}, lambda_2^{-1}, ..., lambda_n^{-1}), 特征向量和矩阵(A)相同。该定理证明如下:

证明


有特征值和特征向量定义有

[bm{A}bm{v} = lambda bm{v} tag{8} ]

这蕴含着

[bm{v} = lambda bm{A}^{-1}bm{v} tag{9} ]

因而

[bm{A}^{-1}bm{v} = lambda^{-1}bm{v} tag{10} ]

得证。


对逆矩阵(bm{A}^{-1})使用幂迭代,并对所得到的的(bm{A}^{-1})的特征值求倒数,就能得到矩阵(bm{A})的最小特征值。幂迭代式子如下:

[bm{x}^{(t+1)} = bm{A}^{-1}bm{x}^{(t)} tag{11} ]

但这要求我们对矩阵(bm{A})求逆,当矩阵(bm{A})过大时计算复杂度过高。于是我们需要稍作修改,对式((11))的计算等价于

[bm{A}bm{x}^{(t+1)} = bm{x}^{(t)} tag{12} ]

这样,我们就可以采用高斯消元对(bm{x}^{(t+1)})进行求解,
不过,我们现在这个算法用于找出矩阵最大和最小的特征值,如何找出其他特征值呢?
如果我们要找出矩阵(bm{A})在实数(s)附近的特征值,可以对矩阵做出接近特征值的移动。我们有定理:对于矩阵(bm{A} in R^{n times n}),设其特征值为(lambda_1, lambda_2, ..., lambda_n),则其转移矩阵(bm{A}-sI)的特征值为(lambda_1 -s, lambda_2 -s, ..., lambda_n -s),而特征向量和矩阵(A)相同。该定理证明如下:

证明


有特征值和特征向量定义有

[bm{A}bm{v} = lambda bm{v} tag{13} ]

从两侧减去(sIbm{v}),得到

[(bm{A} - sI)bm{v} = (lambda - s)bm{v} tag{14} ]

因而矩阵(bm{A} - sI)的特征值为(lambda - s),特征向量仍然为(bm{v}),得证。


这样,我们想求矩阵(bm{A})在实数(s)附近的特征值,可以先对矩阵((bm{A}-sI)^{-1})使用幂迭代求出((bm{A}-sI)^{-1})的最大特征值(b)(因为我们知道转移后的特征值为((lambda - s)^{-1}),要使(lambda)尽可能接近(s),就得取最大的特征值),其中每一步的(x^{(t)})可以对((bm{A}-sI)bm{x}^{(t)}=bm{u}^{(t-1)})进行高斯消元得到。最后,我们计算出(lambda = b^{-1} + s)即为矩阵(A)(s)附近的特征值。该算法的实现如下:

import numpy as np

def powerit(A, x, s, k):
    As = A-s*np.eye(A.shape[0])
    for j in range(k):
        # 为了让数据不失去控制
        # 每次迭代前先对x进行归一化
        u = x/np.linalg.norm(x)
        
        # 求解(A-sI)xj = uj-1
        x = np.linalg.solve(As, u)
        lam = u.dot(x)
    lam = 1/lam + s
        
    # 最后一次迭代得到的特征向量x需要归一化为u
    u = x / np.linalg.norm(x)
    return u, lam        

if __name__ == '__main__':
    A = np.array(
        [
            [1, 3],
            [2, 2]
        ]
    )
    x = np.array([-5, 5])
    k = 10
    # 逆向幂迭代的平移值,可以通过平移值收敛到不同的特征值
    s = 2 
    # 返回占优特征值和对应的特征值
    u, lam = powerit(A, x, s, k)
    # u为 [0.70710341 0.70711015],指向特征向量[1, 1]的方向
    print("占优的特征向量:n", u)
    print("占优的特征值:n", lam)

算法运行结果如下:

占优的特征向量:
 [0.64221793 0.7665221 ]
占优的特征值:
 4.145795530352381

3. 幂迭代的应用:PageRank算法

幂迭代的一大应用就是PageRank算法。PageRank算法作用在有向图上的迭代算法,收敛后可以给每个节点赋一个表示重要性程度的值,该值越大表示节点在图中显得越重要。
比如,给定以下有向图:
电影爱好者的评分情况示意图
其邻接矩阵为:

[left( begin{matrix} 0 & 1 & 1 \ 0 & 0 & 1 \ 1 & 0 & 0 \ end{matrix} right) tag{15} ]

我们将邻接矩阵沿着行归一化,就得到了马尔可夫概率转移矩阵(bm{M})

[left( begin{matrix} 0 & frac{1}{2} & frac{1}{2} \ 0 & 0 & 1 \ 1 & 0 & 0 \ end{matrix} tag{16} right) ]

我们定义上网者从一个页面转移到另一个随机页面的概率是(q),停留在本页面的概率是(1-q)。设图的节点数为(n),然后我们可以计算Google矩阵做为有向图的一般转移矩阵。对矩阵每个元素而言,我们有:

[bm{G}_{ij} = frac{q}{n} + (1-q)bm{M}_{ij} tag{17} ]

注意,Google矩阵每一列求和为1,这是一个随机矩阵,它满足一个性质,即占优特征值为1.
我们采用矩阵表示形式,即:

[bm{G}_{ij} = frac{q}{n}bm{E} + (1-q)bm{M}_{ij} tag{18} ]

其中(bm{E})为元素全为1的(n times n)方阵。
然后我们定义向量(bm{p}),其元素(bm{p}_i)是待在页面(i)上的概率。我们由前面的幂迭代算法知道,矩阵与向量重复相乘后向量会被推到特征值为1的方向。而这里,与特征值1对应的特征向量是一组页面的稳态概率,根据定义这就是(i)个页面的等级,即PageRank算法名字中的Rank的由来。(同时,这也是(G^T)定义的马尔科夫过程的稳态解)。故我们定义迭代过程:

[bm{p}_{t+1} = bm{G}^Tbm{p}_{t} tag{19} ]

注意,每轮迭代后我们要对(bm{p})向量归一化(为了减少时间复杂度我们除以(p)向量所有维度元素中的最大值即可,以近似二范数归一化);而且,我们在所有轮次的迭代结束后也要对(p)向量进行归一化(除以所有维度元素之和以保证所有维度之和为1)。
我们对该图的PageRank算法代码实现如下(其中移动到一个随机页面的概率(q)按惯例取0.15):

import numpy as np
# 归一化同时迭代,k是迭代步数
# 欲推往A特征值的方向,A肯定是方阵
def PageRank(A, p, k, q):
    assert(A.shape[0]==A.shape[1])
    n = A.shape[0]
    M = A.copy().astype(np.float32) #注意要转为浮点型
    for i in range(n):
        M[i, :] = M[i, :]/np.sum(M[i, :])
    G = (q/n)*np.ones((n,n)) + (1-q)*M
    G_T = G.T
    p_t = p.copy()
    for i in range(k):
        y = G_T.dot(p_t)
        p_t = y/np.max(y)
    return p_t/np.sum(p_t)
if __name__ == '__main__':
    A = np.array(
        [
            [0, 1, 1],
            [0, 0, 1],
            [1, 0, 0]
        ]
    )
    k = 20
    p = np.array([1, 1, 1]) 
    q = 0.15 #移动到一个随机页面概率通常为0.15
    # 概率为1-q移动到与本页面链接的页面
    R= PageRank(A, p, k, q)
    print(R)

该算法运行结果如下:

[0.38779177 0.21480614 0.39740209]

可以看到20步迭代结束后网页的Rank向量(bm{R}=(0.38779177, 0.21480614, 0.39740209)^T),这也可以看做网页的重要性程度。

知名程序库和源码阅读建议

PageRank算法有很多优秀的开源实现,这里推荐几个项目:

(1) Spark-GraphX

GraphX是一个优秀的分布式图计算库,从属于Spark分布式计算框架,采用Scala语言实现了很多分布式的图计算算法,也包括我们这里所讲的PageRank算法。
文档地址https://spark.apache.org/graphx
源码地址https://github.com/apache/spark

(2) neo4j

neo4j是一个采用Java实现的知名的图数据库,该数据库也提供了PageRank算法的实现。
文档地址https://neo4j.com/
源码地址https://github.com/neo4j/neo4j.git

如果你有兴趣深入研究搜索引擎的实现,那么向你推荐elastic-search项目,它是基于Java实现的一个搜索引擎。
文档地址https://www.elastic.co/cn/
源码地址https://github.com/elastic/elasticsearch.git

参考文献

  • [1] Timothy sauer. 数值分析(第2版)[M].机械工业出版社, 2018.
  • [2] 李航. 统计学习方法(第2版)[M]. 清华大学出版社, 2019.
内容来源于网络如有侵权请私信删除

文章来源: 博客园

原文链接: https://www.cnblogs.com/lonelyprince7/p/15405907.html

你还没有登录,请先登录注册
  • 还没有人评论,欢迎说说您的想法!