深度学习领域常用的基于CPU/GPU的推理方式有OpenCV DNN、ONNXRuntime、TensorRT以及OpenVINO。这几种方式的推理过程可以统一用下图来概述。整体可分为模型初始化部分和推理部分,后者包括步骤2-5。
以GoogLeNet模型为例,测得几种推理方式在推理部分的耗时如下:
结论:GPU加速首选TensorRT;CPU加速首选OpenVINO;如果需要兼具CPU和GPU推理功能,可以选择ONNXRuntime。
下一篇内容:【模型部署 02】Python实现分类模型(以GoogLeNet为例)在OpenCV DNN、ONNXRuntime、TensorRT、OpenVINO上的推理部署
1. 环境配置
1.1 OpenCV DNN
【模型部署】OpenCV4.6.0+CUDA11.1+VS2019环境配置
1.2 ONNXRuntime
【模型部署】在C++和Python中配置ONNXRuntime环境
1.3 TensorRT
【模型部署】在C++和Python中搭建TensorRT环境
1.4 OpenVINO2022
【模型部署】在C++和Python中配置OpenVINO2022环境
2. PyTorch模型文件(pt/pth/pkl)转ONNX
2.1 pt/pth/pkl互转
PyTorch中支持导出三种后缀格式的模型文件:pt、pth和pkl,这三种格式在存储方式上并无区别,只是后缀不同。三种格式之间的转换比较简单,只需要创建模型并加载模型参数,然后再保存为其他格式即可。
以pth转pt为例:
import torch import torchvision # 构建模型 model = torchvision.models.googlenet(num_classes=2, init_weights=True) # 加载模型参数,pt/pth/pkl三种格式均可 model.load_state_dict(torch.load("googlenet_catdog.pth")) model.eval() # 重新保存为所需要转换的格式 torch.save(model.state_dict(), 'googlenet_catdog.pt')
2.2 pt/pth/pkl转ONNX
PyTorch中提供了现成的函数torch.onnx.export(),可将模型文件转换成onnx格式。该函数原型如下:
export(model, args, f, export_params=True, verbose=False, training=TrainingMode.EVAL, input_names=None, output_names=None, operator_export_type=None, opset_version=None, do_constant_folding=True, dynamic_axes=None, keep_initializers_as_inputs=None, custom_opsets=None, export_modules_as_functions=False)
主要参数含义:
- model (torch.nn.Module, torch.jit.ScriptModule or torch.jit.ScriptFunction) :需要转换的模型。
- args (tuple or torch.Tensor) :args可以被设置为三种形式:
- 一个tuple,这个tuple应该与模型的输入相对应,任何非Tensor的输入都会被硬编码入onnx模型,所有Tensor类型的参数会被当做onnx模型的输入。
args = (x, y, z)
- 一个Tensor,一般这种情况下模型只有一个输入。
args = torch.Tensor([1, 2, 3])
- 一个带有字典的tuple,这种情况下,所有字典之前的参数会被当做“非关键字”参数传入网络,字典中的键值对会被当做关键字参数传入网络。如果网络中的关键字参数未出现在此字典中,将会使用默认值,如果没有设定默认值,则会被指定为None。
args = (x, {'y': input_y, 'z': input_z})
NOTE:一个特殊情况,当网络本身最后一个参数为字典时,直接在tuple最后写一个字典则会被误认为关键字传参。所以,可以通过在tuple最后添加一个空字典来解决。
# 错误写法: torch.onnx.export( model, (x, # WRONG: will be interpreted as named arguments {y: z}), "test.onnx.pb") # 纠正 torch.onnx.export( model, (x, {y: z}, {}), "test.onnx.pb")
- 一个tuple,这个tuple应该与模型的输入相对应,任何非Tensor的输入都会被硬编码入onnx模型,所有Tensor类型的参数会被当做onnx模型的输入。
- f:一个文件类对象或一个路径字符串,二进制的protocol buffer将被写入此文件,即onnx文件。
- export_params (bool, default False) :如果为True则导出模型的参数。如果想导出一个未训练的模型,则设为False。
- verbose (bool, default False) :如果为True,则打印一些转换日志,并且onnx模型中会包含doc_string信息。
- training (enum, default TrainingMode.EVAL) :枚举类型包括:
- TrainingMode.EVAL - 以推理模式导出模型。
- TrainingMode.PRESERVE - 如果model.training为False,则以推理模式导出;否则以训练模式导出。
- TrainingMode.TRAINING - 以训练模式导出,此模式将禁止一些影响训练的优化操作。
- input_names (list of str, default empty list) :按顺序分配给onnx图的输入节点的名称列表。
- output_names (list of str, default empty list) :按顺序分配给onnx图的输出节点的名称列表。
- operator_export_type (enum, default None) :默认为OperatorExportTypes.ONNX, 如果Pytorch built with DPYTORCH_ONNX_CAFFE2_BUNDLE,则默认为OperatorExportTypes.ONNX_ATEN_FALLBACK。枚举类型包括:
- OperatorExportTypes.ONNX - 将所有操作导出为ONNX操作。
- OperatorExportTypes.ONNX_FALLTHROUGH - 试图将所有操作导出为ONNX操作,但碰到无法转换的操作(如onnx未实现的操作),则将操作导出为“自定义操作”,为了使导出的模型可用,运行时必须支持这些自定义操作。支持自定义操作方法见链接。
- OperatorExportTypes.ONNX_ATEN - 所有ATen操作导出为ATen操作,ATen是Pytorch的内建tensor库,所以这将使得模型直接使用Pytorch实现。(此方法转换的模型只能被Caffe2直接使用)
- OperatorExportTypes.ONNX_ATEN_FALLBACK - 试图将所有的ATen操作也转换为ONNX操作,如果无法转换则转换为ATen操作(此方法转换的模型只能被Caffe2直接使用)。例如:
# 转换前: graph(%0 : Float): %3 : int = prim::Constant[value=0]() # conversion unsupported %4 : Float = aten::triu(%0, %3) # conversion supported %5 : Float = aten::mul(%4, %0) return (%5) # 转换后: graph(%0 : Float): %1 : Long() = onnx::Constant[value={0}]() # not converted %2 : Float = aten::ATen[operator="triu"](%0, %1) # converted %3 : Float = onnx::Mul(%2, %0) return (%3)
- opset_version (int, default 9) :取值必须等于_onnx_main_opset或在_onnx_stable_opsets之内。具体可在torch/onnx/symbolic_helper.py中找到。例如:
_default_onnx_opset_version = 9 _onnx_main_opset = 13 _onnx_stable_opsets = [7, 8, 9, 10, 11, 12] _export_onnx_opset_version = _default_onnx_opset_version
- do_constant_folding (bool, default False) :是否使用“常量折叠”优化。常量折叠将使用一些算好的常量来优化一些输入全为常量的节点。
- example_outputs (T or a tuple of T, where T is Tensor or convertible to Tensor, default None) :当需输入模型为ScriptModule 或 ScriptFunction时必须提供。此参数用于确定输出的类型和形状,而不跟踪(tracing)模型的执行。
- dynamic_axes (dict<string, dict<python:int, string>> or dict<string, list(int)>, default empty dict) :通过以下规则设置动态的维度:
- KEY(str) - 必须是input_names或output_names指定的名称,用来指定哪个变量需要使用到动态尺寸。
- VALUE(dict or list) - 如果是一个dict,dict中的key是变量的某个维度,dict中的value是我们给这个维度取的名称。如果是一个list,则list中的元素都表示此变量的某个维度。
代码实现:
import torch import torchvision weight_file = 'googlenet_catdog.pt' onnx_file = 'googlenet_catdog.onnx' model = torchvision.models.googlenet(num_classes=2, init_weights=True) model.load_state_dict(torch.load(weight_file, map_location=torch.device('cpu'))) model.eval() # 单输入单输出,固定batch input = torch.randn(1, 3, 224, 224) input_names = ["input"] output_names = ["output"] torch.onnx.export(model=model, args=input, f=onnx_file, input_names=input_names, output_names=output_names, opset_version=11, verbose=True)
通过netron.app可视化onnx的输入输出:
如果需要多张图片同时进行推理,可以通过设置export的dynamic_axes参数,将模型输入输出的指定维度设置为变量。
import torch import torchvision weight_file = 'googlenet_catdog.pt' onne_file = 'googlenet_catdog.onnx' model = torchvision.models.googlenet(num_classes=2, init_weights=True) model.load_state_dict(torch.load(weight_file, map_location=torch.device('cpu'))) model.eval() # 单输入单输出,动态batch input = torch.randn(1, 3, 224, 224) input_names = ["input"] output_names = ["output"] torch.onnx.export(model=model, args=input, f=onnx_file, input_names=input_names, output_names=output_names, opset_version=11, verbose=True, dynamic_axes={'input': {0: 'batch'}, 'output': {0: 'batch'}})
动态batch的onnx文件输入输出在netron.app可视化如下,其中batch维度是变量的形式,可以根据自己需要设置为大于0的任意整数。
如果模型有多个输入和输出,按照以下形式导出:
# 模型有两个输入和两个输出,动态batch input1 = torch.randn(1, 3, 256, 192).to(opt.device) input2 = torch.randn(1, 3, 256, 192).to(opt.device) input_names = ["input1", "input2"] output_names = ["output1", "output2"] torch.onnx.export(model=model, args=(input1, input2), f=opt.onnx_path, input_names=input_names, output_names=output_names, opset_version=16, verbose=True, dynamic_axes={'input1': {0: 'batch'}, 'input2': {0: 'batch'}, 'output1': {0: 'batch'}, 'output2': {0: 'batch'}})
3. OpenCV DNN部署GoogLeNet
3.1 推理过程及代码实现
整个推理过程可分为前处理、推理、后处理三部分。具体细节请阅读代码,包括单图推理、动态batch推理的实现。
#include <opencv2/opencv.hpp> #include <opencv2/dnn.hpp> #include <chrono> #include <fstream> using namespace std; using namespace cv; using namespace cv::dnn; std::string onnxPath = "E:/inference-master/models/engine/googlenet-pretrained_batch.onnx"; std::string imagePath = "E:/inference-master/images/catdog"; std::string classNamesPath = "E:/inference-master/imagenet-classes.txt"; // 标签名称列表(类名) cv::dnn::Net net; std::vector<std::string> classNameList; // 标签名,可以从文件读取 int batchSize = 32; int softmax(const cv::Mat& src, cv::Mat& dst) { float max = 0.0; float sum = 0.0; max = *max_element(src.begin<float>(), src.end<float>()); cv::exp((src - max), dst); sum = cv::sum(dst)[0]; dst /= sum; return 0; } // GoogLeNet模型初始化 void ModelInit(string onnxPath) { net = cv::dnn::readNetFromONNX(onnxPath); // net = cv::dnn::readNetFromCaffe("E:/inference-master/2/deploy.prototxt", "E:/inference-master/2/default.caffemodel"); // 设置计算后台和计算设备 // CPU(默认) // net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV); // net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU); // CUDA net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA); net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA); // 读取标签名称 ifstream fin(classNamesPath.c_str()); string strLine; classNameList.clear(); while (getline(fin, strLine)) classNameList.push_back(strLine); fin.close(); } // 单图推理 bool ModelInference(cv::Mat srcImage, std::string& className, float& confidence) { auto start = chrono::high_resolution_clock::now(); cv::Mat image = srcImage.clone(); // 预处理(尺寸变换、通道变换、归一化) cv::cvtColor(image, image, cv::COLOR_BGR2RGB); cv::resize(image, image, cv::Size(224, 224)); image.convertTo(image, CV_32FC3, 1.0 / 255.0); cv::Scalar mean(0.485, 0.456, 0.406); cv::Scalar std(0.229, 0.224, 0.225); cv::subtract(image, mean, image); cv::divide(image, std, image); // blobFromImage操作顺序:swapRB交换通道 -> scalefactor比例缩放 -> mean求减 -> size进行resize; // mean操作时,ddepth不能选取CV_8U; // crop=True时,先等比缩放,直到宽高之一率先达到对应的size尺寸,另一个大于或等于对应的size尺寸,然后从中心裁剪; // 返回4-D Mat维度顺序:NCHW // cv::Mat blob = cv::dnn::blobFromImage(image, 1., cv::Size(224, 224), cv::Scalar(0, 0, 0), false, false); cv::Mat blob = cv::dnn::blobFromImage(image); // 设置输入 net.setInput(blob); auto end1 = std::chrono::high_resolution_clock::now(); auto ms1 = std::chrono::duration_cast<std::chrono::microseconds>(end1 - start); std::cout << "PreProcess time: " << (ms1 / 1000.0).count() << "ms" << std::endl; // 前向推理 cv::Mat preds = net.forward(); auto end2 = std::chrono::high_resolution_clock::now(); auto ms2 = std::chrono::duration_cast<std::chrono::microseconds>(end2 - end1); std::cout << "Inference time: " << (ms2 / 1000.0).count() << "ms" << std::endl; // 结果归一化(每个batch分别求softmax) softmax(preds, preds); Point minLoc, maxLoc; double minValue = 0, maxValue = 0; cv::minMaxLoc(preds, &minValue, &maxValue, &minLoc, &maxLoc); int labelIndex = maxLoc.x; double probability = maxValue; className = classNameList[labelIndex]; confidence = probability; // std::cout << "class:" << className << endl << "confidence:" << confidence << endl; auto end3 = std::chrono::high_resolution_clock::now(); auto ms3 = std::chrono::duration_cast<std::chrono::microseconds>(end3 - end2); std::cout << "PostProcess time: " << (ms3 / 1000.0).count() << "ms" << std::endl; auto ms = chrono::duration_cast<std::chrono::microseconds>(end3 - start); std::cout << "opencv_dnn 推理时间:" << (ms / 1000.0).count() << "ms" << std::endl; } // 多图并行推理(动态batch) bool ModelInference_Batch(std::vector<cv::Mat> srcImages, std::vector<string>& classNames, std::vector<float>& confidences) { auto start = chrono::high_resolution_clock::now(); // 预处理(尺寸变换、通道变换、归一化) std::vector<cv::Mat> images; for (size_t i = 0; i < srcImages.size(); i++) { cv::Mat image = srcImages[i].clone(); cv::cvtColor(image, image, cv::COLOR_BGR2RGB); cv::resize(image, image, cv::Size(224, 224)); image.convertTo(image, CV_32FC3, 1.0 / 255.0); cv::Scalar mean(0.485, 0.456, 0.406); cv::Scalar std(0.229, 0.224, 0.225); cv::subtract(image, mean, image); cv::divide(image, std, image); images.push_back(image); } cv::Mat blob = cv::dnn::blobFromImages(images); auto end1 = std::chrono::high_resolution_clock::now(); auto ms1 = std::chrono::duration_cast<std::chrono::microseconds>(end1 - start); std::cout << "PreProcess time: " << (ms1 / 1000.0).count() << "ms" << std::endl; // 设置输入 net.setInput(blob); // 前向推理 cv::Mat preds = net.forward(); auto end2 = std::chrono::high_resolution_clock::now(); auto ms2 = std::chrono::duration_cast<std::chrono::microseconds>(end2 - end1) / 100.0; std::cout << "Inference time: " << (ms2 / 1000.0).count() << "ms" << std::endl; int rows = preds.size[0]; // batch int cols = preds.size[1]; // 类别数(每一个类别的得分) for (int row = 0; row < rows; row++) { cv::Mat scores(1, cols, CV_32FC1, preds.ptr<float>(row)); softmax(scores, scores); // 结果归一化 Point minLoc, maxLoc; double minValue = 0, maxValue = 0; cv::minMaxLoc(scores, &minValue, &maxValue, &minLoc, &maxLoc); int labelIndex = maxLoc.x; double probability = maxValue; classNames.push_back(classNameList[labelIndex]); confidences.push_back(probability); } auto end3 = std::chrono::high_resolution_clock::now(); auto ms3 = std::chrono::duration_cast<std::chrono::microseconds>(end3 - end2); std::cout << "PostProcess time: " << (ms3 / 1000.0).count() << "ms" << std::endl; auto ms = chrono::duration_cast<std::chrono::microseconds>(end3 - start); std::cout << "opencv_dnn batch" << rows << " 推理时间:" << (ms / 1000.0).count() << "ms" << std::endl; } int main(int argc, char** argv) { // 模型初始化 ModelInit(onnxPath); // 读取图像 vector<string> filenames; glob(imagePath, filenames); // 单图推理测试 for (int n = 0; n < filenames.size(); n++) { // 重复100次,计算平均时间 auto start = chrono::high_resolution_clock::now(); cv::Mat src = imread(filenames[n]); std::string classname; float confidence; for (int i = 0; i < 101; i++) { if (i==1) start = chrono::high_resolution_clock::now(); ModelInference(src, classname, confidence); } auto end = chrono::high_resolution_clock::now(); auto ms = chrono::duration_cast<std::chrono::microseconds>(end - start) / 100; std::cout << "opencv_dnn 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl; } // 批量(动态batch)推理测试 std::vector<cv::Mat> srcImages; for (int n = 0; n < filenames.size(); n++) { cv::Mat image = imread(filenames[n]); srcImages.push_back(image); if ((n + 1) % batchSize == 0 || n == filenames.size() - 1) { // 重复100次,计算平均时间 auto start = chrono::high_resolution_clock::now(); for (int i = 0; i < 101; i++) { if (i == 1) start = chrono::high_resolution_clock::now(); std::vector<std::string> classNames; std::vector<float> confidences; ModelInference_Batch(srcImages, classNames, confidences); } srcImages.clear(); auto end = chrono::high_resolution_clock::now(); auto ms = chrono::duration_cast<std::chrono::microseconds>(end - start) / 100; std::cout << "opencv_dnn batch" << batchSize << " 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl; } } return 0; }
3.2 选择CPU/GPU
OpenCV DNN切换CPU和GPU推理,只需要通过下边两行代码设置计算后台和计算设备。
CPU推理
net.setPreferableBackend(cv::dnn::DNN_BACKEND_OPENCV); net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU);
GPU推理
net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA); net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA);
以下两点需要注意:
- 在不做任何设置的情况下,默认使用CPU进行推理。
- 在设置为GPU推理时,如果电脑没有搜索到CUDA环境,则会自动转换成CPU进行推理。
3.3 多输出模型推理
当模型有多个输出时,使用forward的重载方法,返回Mat类型的数组:
// 模型多输出 std::vector<cv::Mat> preds; net.forward(preds); cv::Mat pred1 = preds[0]; cv::Mat pred2 = preds[1];
4. ONNXRuntime部署GoogLeNet
4.1 推理过程及代码实现
代码:
#include <opencv2/opencv.hpp> #include <opencv2/dnn.hpp> #include <onnxruntime_cxx_api.h> #include <vector> #include <fstream> #include <chrono> using namespace std; using namespace cv; using namespace Ort; // C++表示字符串的方式:char*、string、wchar_t*、wstring、字符串数组 const wchar_t* onnxPath = L"E:/inference-master/models/GoogLeNet/googlenet-pretrained_batch1.onnx"; std::string imagePath = "E:/inference-master/images/catdog"; std::string classNamesPath = "E:/inference-master/imagenet-classes.txt"; // 标签名称列表(类名) std::vector<std::string> classNameList; // 标签名,可以从文件读取 int batchSize = 1; Ort::Env env{ nullptr }; Ort::SessionOptions* sessionOptions; Ort::Session* session; size_t inputCount; size_t outputCount; std::vector<const char*> inputNames; std::vector<const char*> outputNames; std::vector<int64_t> inputShape; std::vector<int64_t> outputShape; // 对数组元素求softmax std::vector<float> softmax(std::vector<float> input) { float total = 0; for (auto x : input) total += exp(x); std::vector<float> result; for (auto x : input) result.push_back(exp(x) / total); return result; } int softmax(const cv::Mat& src, cv::Mat& dst) { float max = 0.0; float sum = 0.0; max = *max_element(src.begin<float>(), src.end<float>()); cv::exp((src - max), dst); sum = cv::sum(dst)[0]; dst /= sum; return 0; } // 前(预)处理(通道变换、标准化等) void PreProcess(cv::Mat srcImage, cv::Mat& dstImage) { // 通道变换,BGR->RGB cvtColor(srcImage, dstImage, cv::COLOR_BGR2RGB); resize(dstImage, dstImage, Size(224, 224)); // 图像归一化 dstImage.convertTo(dstImage, CV_32FC3, 1.0 / 255.0); cv::Scalar mean(0.485, 0.456, 0.406); cv::Scalar std(0.229, 0.224, 0.225); subtract(dstImage, mean, dstImage); divide(dstImage, std, dstImage); } // 模型初始化 int ModelInit(const wchar_t* onnxPath, bool useCuda, int deviceId) { // 读取标签名称 std::ifstream fin(classNamesPath.c_str()); std::string strLine; classNameList.clear(); while (getline(fin, strLine)) classNameList.push_back(strLine); fin.close(); // 环境设置,控制台输出设置 env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "GoogLeNet"); sessionOptions = new Ort::SessionOptions(); // 设置线程数 sessionOptions->SetIntraOpNumThreads(16); // 优化等级:启用所有可能的优化 sessionOptions->SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL); if (useCuda) { // 开启CUDA加速,需要cuda_provider_factory.h头文件 OrtSessionOptionsAppendExecutionProvider_CUDA(*sessionOptions, deviceId); } // 创建session session = new Ort::Session(env, onnxPath, *sessionOptions); // 获取输入输出数量 inputCount = session->GetInputCount(); outputCount = session->GetOutputCount(); std::cout << "Number of inputs = " << inputCount << std::endl; std::cout << "Number of outputs = " << outputCount << std::endl; // 获取输入输出名称 Ort::AllocatorWithDefaultOptions allocator; const char* inputName = session->GetInputName(0, allocator); const char* outputName = session->GetOutputName(0, allocator); inputNames = { inputName }; outputNames = { outputName }; std::cout << "Name of inputs = " << inputName << std::endl; std::cout << "Name of outputs = " << outputName << std::endl; // 获取输入输出维度信息,返回类型std::vector<int64_t> inputShape = session->GetInputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape(); outputShape = session->GetOutputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape(); std::cout << "Shape of inputs = " << "(" << inputShape[0] << "," << inputShape[1] << "," << inputShape[2] << "," << inputShape[3] << ")" << std::endl; std::cout << "Shape of outputs = " << "(" << outputShape[0] << "," << outputShape[1] << ")" << std::endl; return 0; } // 单图推理 void ModelInference(cv::Mat srcImage, std::string& className, float& confidence) { auto start = chrono::high_resolution_clock::now(); // 输入图像预处理 cv::Mat image; //PreProcess(srcImage, image); // 这里使用调用函数的方式,处理时间莫名变长很多,很奇怪 // 通道变换,BGR->RGB cvtColor(srcImage, image, cv::COLOR_BGR2RGB); resize(image, image, Size(224, 224)); // 图像归一化 image.convertTo(image, CV_32FC3, 1.0 / 255.0); cv::Scalar mean(0.485, 0.456, 0.406); cv::Scalar std(0.229, 0.224, 0.225); subtract(image, mean, image); divide(image, std, image); cv::Mat blob = cv::dnn::blobFromImage(image); auto end1 = std::chrono::high_resolution_clock::now(); auto ms1 = std::chrono::duration_cast<std::chrono::microseconds>(end1 - start); std::cout << "PreProcess time: " << (ms1 / 1000.0).count() << "ms" << std::endl; // 创建输入tensor auto memoryInfo = Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault); std::vector<Ort::Value> inputTensors; inputTensors.emplace_back(Ort::Value::CreateTensor<float>(memoryInfo, blob.ptr<float>(), blob.total(), inputShape.data(), inputShape.size())); // 推理 auto outputTensors = session->Run(Ort::RunOptions{ nullptr }, inputNames.data(), inputTensors.data(), inputCount, outputNames.data(), outputCount); auto end2 = std::chrono::high_resolution_clock::now(); auto ms2 = std::chrono::duration_cast<std::chrono::microseconds>(end2 - end1); std::cout << "Inference time: " << (ms2 / 1000.0).count() << "ms" << std::endl; // 获取输出 float* preds = outputTensors[0].GetTensorMutableData<float>(); // 也可以使用outputTensors.front(); int64_t numClasses = outputShape[1]; cv::Mat output = cv::Mat_<float>(1, numClasses); for (int j = 0; j < numClasses; j++) { output.at<float>(0, j) = preds[j]; } Point minLoc, maxLoc; double minValue = 0, maxValue = 0; cv::minMaxLoc(output, &minValue, &maxValue, &minLoc, &maxLoc); int labelIndex = maxLoc.x; double probability = maxValue; className = classNameList[1]; confidence = probability; auto end3 = std::chrono::high_resolution_clock::now(); auto ms3 = std::chrono::duration_cast<std::chrono::microseconds>(end3 - end2); std::cout << "PostProcess time: " << (ms3 / 1000.0).count() << "ms" << std::endl; auto ms = chrono::duration_cast<std::chrono::microseconds>(end3 - start); std::cout << "onnxruntime单图推理时间:" << (ms / 1000.0).count() << "ms" << std::endl; } // 单图推理 void ModelInference_Batch(std::vector<cv::Mat> srcImages, std::vector<string>& classNames, std::vector<float>& confidences) { auto start = chrono::high_resolution_clock::now(); // 输入图像预处理 std::vector<cv::Mat> images; for (size_t i = 0; i < srcImages.size(); i++) { cv::Mat image = srcImages[i].clone(); // 通道变换,BGR->RGB cvtColor(image, image, cv::COLOR_BGR2RGB); resize(image, image, Size(224, 224)); // 图像归一化 image.convertTo(image, CV_32FC3, 1.0 / 255.0); cv::Scalar mean(0.485, 0.456, 0.406); cv::Scalar std(0.229, 0.224, 0.225); subtract(image, mean, image); divide(image, std, image); images.push_back(image); } // 图像转blob格式 cv::Mat blob = cv::dnn::blobFromImages(images); auto end1 = std::chrono::high_resolution_clock::now(); auto ms1 = std::chrono::duration_cast<std::chrono::microseconds>(end1 - start); std::cout << "PreProcess time: " << (ms1 / 1000.0).count() << "ms" << std::endl; // 创建输入tensor std::vector<Ort::Value> inputTensors; auto memoryInfo = Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault); inputTensors.emplace_back(Ort::Value::CreateTensor<float>(memoryInfo, blob.ptr<float>(), blob.total(), inputShape.data(), inputShape.size())); // 推理 std::vector<Ort::Value> outputTensors = session->Run(Ort::RunOptions{ nullptr }, inputNames.data(), inputTensors.data(), inputCount, outputNames.data(), outputCount); auto end2 = std::chrono::high_resolution_clock::now(); auto ms2 = std::chrono::duration_cast<std::chrono::microseconds>(end2 - end1)/100; std::cout << "inference time: " << (ms2 / 1000.0).count() << "ms" << std::endl; // 获取输出 float* preds = outputTensors[0].GetTensorMutableData<float>(); // 也可以使用outputTensors.front(); // cout << preds[0] << "," << preds[1] << "," << preds[1000] << "," << preds[1001] << endl; int batch = outputShape[0]; int numClasses = outputShape[1]; cv::Mat output(batch, numClasses, CV_32FC1, preds); int rows = output.size[0]; // batch int cols = output.size[1]; // 类别数(每一个类别的得分) for (int row = 0; row < rows; row++) { cv::Mat scores(1, cols, CV_32FC1, output.ptr<float>(row)); softmax(scores, scores); // 结果归一化 Point minLoc, maxLoc; double minValue = 0, maxValue = 0; cv::minMaxLoc(scores, &minValue, &maxValue, &minLoc, &maxLoc); int labelIndex = maxLoc.x; double probability = maxValue; classNames.push_back(classNameList[labelIndex]); confidences.push_back(probability); } auto end3 = std::chrono::high_resolution_clock::now(); auto ms3 = std::chrono::duration_cast<std::chrono::microseconds>(end3 - end2); std::cout << "PostProcess time: " << (ms3 / 1000.0).count() << "ms" << std::endl; auto ms = chrono::duration_cast<std::chrono::microseconds>(end3 - start); std::cout << "onnxruntime单图推理时间:" << (ms / 1000.0).count() << "ms" << std::endl; } int main(int argc, char** argv) { // 模型初始化 ModelInit(onnxPath, true, 0); // 读取图像 std::vector<std::string> filenames; cv::glob(imagePath, filenames); // 单图推理测试 for (int i = 0; i < filenames.size(); i++) { // 每张图重复运行100次,计算平均时间 auto start = chrono::high_resolution_clock::now(); cv::Mat srcImage = imread(filenames[i]); std::string className; float confidence; for (int n = 0; n < 101; n++) { if (n == 1) start = chrono::high_resolution_clock::now(); ModelInference(srcImage, className, confidence); } // 显示 cv::putText(srcImage, className + ":" + std::to_string(confidence), cv::Point(10, 20), FONT_HERSHEY_SIMPLEX, 0.6, cv::Scalar(0, 0, 255), 1, 1); auto end = chrono::high_resolution_clock::now(); auto ms = chrono::duration_cast<std::chrono::microseconds>(end - start) / 100; std::cout << "onnxruntime 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl; } // 批量推理测试 std::vector<cv::Mat> srcImages; for (int i = 0; i < filenames.size(); i++) { cv::Mat image = imread(filenames[i]); srcImages.push_back(image); if ((i + 1) % batchSize == 0 || i == filenames.size() - 1) { // 重复100次,计算平均时间 auto start = chrono::high_resolution_clock::now(); for (int n = 0; n < 101; n++) { if (n == 1) start = chrono::high_resolution_clock::now(); // 首次推理耗时很久 std::vector<std::string> classNames; std::vector<float> confidences; ModelInference_Batch(srcImages, classNames, confidences); } srcImages.clear(); auto end = chrono::high_resolution_clock::now(); auto ms = chrono::duration_cast<std::chrono::microseconds>(end - start) / 100; std::cout << "onnxruntime batch" << batchSize << " 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl; } } return 0; }
注意:ORT支持多图并行推理,但是要求转出onnx的时候batch就要使用固定数值。动态batch(即batch=-1)的onnx文件是不支持推理的。
4.2 选择CPU/GPU
使用GPU推理,只需要添加一行代码:
if (useCuda) { // 开启CUDA加速 OrtSessionOptionsAppendExecutionProvider_CUDA(*sessionOptions, deviceId); }
4.3 多输入多输出模型推理
推理步骤和单图推理基本一致,需要在输入tensor中依次添加所有的输入。假设模型有两个输入和两个输出:
// 创建session session2 = new Ort::Session(env1, onnxPath, sessionOptions1); // 获取模型输入输出信息 inputCount2 = session2->GetInputCount(); outputCount2 = session2->GetOutputCount(); // 输入和输出各有两个 Ort::AllocatorWithDefaultOptions allocator; const char* inputName1 = session2->GetInputName(0, allocator); const char* inputName2 = session2->GetInputName(1, allocator); const char* outputName1 = session2->GetOutputName(0, allocator); const char* outputName2 = session2->GetOutputName(1, allocator); intputNames2 = { inputName1, inputName2 }; outputNames2 = { outputName1, outputName2 }; // 获取输入输出维度信息,返回类型std::vector<int64_t> inputShape2_1 = session2->GetInputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape(); inputShape2_2 = session2->GetInputTypeInfo(1).GetTensorTypeAndShapeInfo().GetShape(); outputShape2_1 = session2->GetOutputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape(); outputShape2_2 = session2->GetOutputTypeInfo(1).GetTensorTypeAndShapeInfo().GetShape(); ... // 创建输入tensor auto memoryInfo = Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault); std::vector<Ort::Value> inputTensors; inputTensors.emplace_back(Ort::Value::CreateTensor<float>(memoryInfo, blob1.ptr<float>(), blob1.total(), inputShape2_1.data(), inputShape2_1.size())); inputTensors.emplace_back(Ort::Value::CreateTensor<float>(memoryInfo, blob2.ptr<float>(), blob2.total(), inputShape2_2.data(), inputShape2_2.size())); // 推理 auto outputTensors = session2->Run(Ort::RunOptions{ nullptr }, intputNames2.data(), inputTensors.data(), inputCount2, outputNames2.data(), outputCount2); // 获取输出 float* preds1 = outputTensors[0].GetTensorMutableData<float>(); float* preds2 = outputTensors[1].GetTensorMutableData<float>();
5. TensorRT部署GoogLeNet
TRT推理有两种常见的方式:
- 通过官方安装包里边的提供的trtexec.exe工具,从onnx文件转换得到trt文件,然后执行推理;
- 由onnx文件转化得到engine文件,再执行推理。
两种方式原理一样,这里我们只介绍第二种方式。推理过程可分为两阶段:使用onnx构建推理engine和加载engine执行推理。
5.1 构建推理引擎(engine文件)
engine的构建是TensorRT推理至关重要的一步,它特定于所构建的确切GPU模型,不能跨平台或TensorRT版本移植。举个简单的例子,如果你在RTX3060上使用TensorRT 8.2.5构建了engine,那么推理部署也必须要在RTX3060上进行,且要具备TensorRT 8.2.5环境。engine构建的大致流程如下:
engine的构建有很多种方式,这里我们介绍常用的三种。我一般会选择直接在Python中构建,这样模型的训练、转onnx、转engine都在Python端完成,方便且省事。
方法一:在Python中构建
import os import sys import logging import argparse import tensorrt as trt os.environ['CUDA_VISIBLE_DEVICES'] = '0' # 延迟加载模式,cuda11.7新功能,设置为LAZY有可能会极大的降低内存和显存的占用 os.environ['CUDA_MODULE_LOADING'] = 'LAZY' logging.basicConfig(level=logging.INFO) logging.getLogger("EngineBuilder").setLevel(logging.INFO) log = logging.getLogger("EngineBuilder") class EngineBuilder: """ Parses an ONNX graph and builds a TensorRT engine from it. """ def __init__(self, batch_size=1, verbose=False, workspace=8): """ :param verbose: If enabled, a higher verbosity level will be set on the TensorRT logger. :param workspace: Max memory workspace to allow, in Gb. """ # 1. 构建builder self.trt_logger = trt.Logger(trt.Logger.INFO) if verbose: self.trt_logger.min_severity = trt.Logger.Severity.VERBOSE trt.init_libnvinfer_plugins(self.trt_logger, namespace="") self.builder = trt.Builder(self.trt_logger) self.config = self.builder.create_builder_config() # 构造builder.config self.config.max_workspace_size = workspace * (2 ** 30) # workspace分配 self.batch_size = batch_size self.network = None self.parser = None def create_network(self, onnx_path): """ Parse the ONNX graph and create the corresponding TensorRT network definition. :param onnx_path: The path to the ONNX graph to load. """ network_flags = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) self.network = self.builder.create_network(network_flags) self.parser = trt.OnnxParser(self.network, self.trt_logger) onnx_path = os.path.realpath(onnx_path) with open(onnx_path, "rb") as f: if not self.parser.parse(f.read()): log.error("Failed to load ONNX file: {}".format(onnx_path)) for error in range(self.parser.num_errors): log.error(self.parser.get_error(error)) sys.exit(1) # 获取网络输入输出 inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)] log.info("Network Description") for input in inputs: self.batch_size = input.shape[0] log.info("Input '{}' with shape {} and dtype {}".format(input.name, input.shape, input.dtype)) for output in outputs: log.info("Output '{}' with shape {} and dtype {}".format(output.name, output.shape, output.dtype)) assert self.batch_size > 0 self.builder.max_batch_size = self.batch_size def create_engine(self, engine_path, precision): """ Build the TensorRT engine and serialize it to disk. :param engine_path: The path where to serialize the engine to. :param precision: The datatype to use for the engine, either 'fp32', 'fp16' or 'int8'. """ engine_path = os.path.realpath(engine_path) engine_dir = os.path.dirname(engine_path) os.makedirs(engine_dir, exist_ok=True) log.info("Building {} Engine in {}".format(precision, engine_path)) inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)] if precision == "fp16": if not self.builder.platform_has_fast_fp16: log.warning("FP16 is not supported natively on this platform/device") else: self.config.set_flag(trt.BuilderFlag.FP16) with self.builder.build_engine(self.network, self.config) as engine, open(engine_path, "wb") as f: log.info("Serializing engine to file: {:}".format(engine_path)) f.write(engine.serialize()) def main(args): builder = EngineBuilder(args.batch_size, args.verbose, args.workspace) builder.create_network(args.onnx) builder.create_engine(args.engine, args.precision) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-o", "--onnx", default=r'googlenet-pretrained_batch8.onnx', help="The input ONNX model file to load") parser.add_argument("-e", "--engine", default=r'googlenet-pretrained_batch8_from_py_3080_FP16.engine', help="The output path for the TRT engine") parser.add_argument("-p", "--precision", default="fp16", choices=["fp32", "fp16", "int8"], help="The precision mode to build in, either 'fp32', 'fp16' or 'int8', default: 'fp16'") parser.add_argument("-b", "--batch_size", default=8, type=int, help="batch number of input") parser.add_argument("-v", "--verbose", action="store_true", help="Enable more verbose log output") parser.add_argument("-w", "--workspace", default=8, type=int, help="The max memory workspace size to allow in Gb, " "default: 8") args = parser.parse_args() main(args)
生成fp16模型:参数precision设置为fp16即可。int8模型生成过程比较复杂,且对模型精度影响较大,用的不多,这里暂不介绍。
parser.add_argument("-p", "--precision", default="fp16", choices=["fp32", "fp16", "int8"], help="The precision mode to build in, either 'fp32', 'fp16' or 'int8', default: 'fp16'")
方法二:在C++中构建
#include "NvInfer.h" #include "NvOnnxParser.h" #include "cuda_runtime_api.h" #include "logging.h" #include <fstream> #include <map> #include <chrono> #include <cmath> #include <opencv2/opencv.hpp> #include <fstream> using namespace nvinfer1; using namespace nvonnxparser; using namespace std; using namespace cv; std::string onnxPath = "E:/inference-master/models/engine/googlenet-pretrained_batch.onnx"; std::string enginePath = "E:/inference-master/models/engine/googlenet-pretrained_batch_from_cpp.engine"; // 通过C++构建 static const int INPUT_H = 224; static const int INPUT_W = 224; static const int OUTPUT_SIZE = 1000; static const int BATCH_SIZE = 25; const char* INPUT_BLOB_NAME = "input"; const char* OUTPUT_BLOB_NAME = "output"; static Logger gLogger; // onnx转engine void onnx_to_engine(std::string onnx_file_path, std::string engine_file_path, int type) { // 创建builder实例,获取cuda内核目录以获取最快的实现,用于创建config、network、engine的其他对象的核心类 nvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(gLogger); const auto explicitBatch = 1U << static_cast<uint32_t>(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH); // 创建网络定义 nvinfer1::INetworkDefinition* network = builder->createNetworkV2(explicitBatch); // 创建onnx解析器来填充网络 nvonnxparser::IParser* parser = nvonnxparser::createParser(*network, gLogger); // 读取onnx模型文件 parser->parseFromFile(onnx_file_path.c_str(), 2); for (int i = 0; i < parser->getNbErrors(); ++i) { std::cout << "load error: " << parser->getError(i)->desc() << std::endl; } printf("tensorRT load mask onnx model successfully!!!...n"); // 创建生成器配置对象 nvinfer1::IBuilderConfig* config = builder->createBuilderConfig(); builder->setMaxBatchSize(BATCH_SIZE); // 设置最大batch config->setMaxWorkspaceSize(16 * (1 << 20)); // 设置最大工作空间大小 // 设置模型输出精度,0代表FP32,1代表FP16 if (type == 1) { config->setFlag(nvinfer1::BuilderFlag::kFP16); }
// 创建推理引擎 nvinfer1::ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config); // 将推理引擎保存到本地 std::cout << "try to save engine file now~~~" << std::endl; std::ofstream file_ptr(engine_file_path, std::ios::binary); if (!file_ptr) { std::cerr << "could not open plan output file" << std::endl; return; } // 将模型转化为文件流数据 nvinfer1::IHostMemory* model_stream = engine->serialize(); // 将文件保存到本地 file_ptr.write(reinterpret_cast<const char*>(model_stream->data()), model_stream->size()); // 销毁创建的对象 model_stream->destroy(); engine->destroy(); network->destroy(); parser->destroy(); std::cout << "convert onnx model to TensorRT engine model successfully!" << std::endl; } int main(int argc, char** argv) { // onnx转engine onnx_to_engine(onnxPath, enginePath, 0); return 0; }
方法三:使用官方安装包bin目录下的trtexec.exe工具构建
trtexec.exe --onnx=googlenet-pretrained_batch.onnx --saveEngine=googlenet-pretrained_batch_from_trt_trt853.engine --shapes=input:25x3x224x224
fp16模型:在后边加--fp16即可
trtexec.exe --onnx=googlenet-pretrained_batch.onnx --saveEngine=googlenet-pretrained_batch_from_trt_trt853.engine --shapes=input:25x3x224x224 --fp16
5.2 读取engine文件并部署模型
推理代码:
#include "NvInfer.h" #include "NvOnnxParser.h" #include "cuda_runtime_api.h" #include "logging.h" #include <fstream> #include <map> #include <chrono> #include <cmath> #include <opencv2/opencv.hpp> #include "cuda.h" #include "assert.h" #include "iostream" using namespace nvinfer1; using namespace nvonnxparser; using namespace std; using namespace cv; #define CHECK(status) do { auto ret = (status); if (ret != 0) { std::cerr << "Cuda failure: " << ret << std::endl; abort(); } } while (0) std::string enginePath = "E:/inference-master/models/GoogLeNet/googlenet-pretrained_batch1_from_py_3080_FP32.engine"; std::string imagePath = "E:/inference-master/images/catdog"; std::string classNamesPath = "E:/inference-master/imagenet-classes.txt"; // 标签名称列表(类名) std::vector<std::string> classNameList; // 标签名列表 static const int INPUT_H = 224; static const int INPUT_W = 224; static const int CHANNEL = 3; static const int OUTPUT_SIZE = 1000; static const int BATCH_SIZE = 1; const char* INPUT_BLOB_NAME = "input"; const char* OUTPUT_BLOB_NAME = "output"; static Logger gLogger; IRuntime* runtime; ICudaEngine* engine; IExecutionContext* context; void* gpu_buffers[2]; cudaStream_t stream; const int inputIndex = 0; const int outputIndex = 1; // 提前申请内存,可节省推理时间 static float mydata[BATCH_SIZE * CHANNEL * INPUT_H * INPUT_W]; static float prob[BATCH_SIZE * OUTPUT_SIZE]; // 逐行求softmax int softmax(const cv::Mat & src, cv::Mat & dst) { float max = 0.0; float sum = 0.0; cv::Mat tmpdst = cv::Mat::zeros(src.size(), src.type()); std::vector<cv::Mat> srcRows; // 逐行求softmax for (size_t i = 0; i < src.rows; i++) { cv::Mat tmpRow; cv::Mat dataRow = src.row(i).clone(); max = *std::max_element(dataRow.begin<float>(), dataRow.end<float>()); cv::exp((dataRow - max), tmpRow); sum = cv::sum(tmpRow)[0]; tmpRow /= sum; srcRows.push_back(tmpRow); cv::vconcat(srcRows, tmpdst); } dst = tmpdst.clone(); return 0; } // onnx转engine void onnx_to_engine(std::string onnx_file_path, std::string engine_file_path, int type) { // 创建builder实例,获取cuda内核目录以获取最快的实现,用于创建config、network、engine的其他对象的核心类 nvinfer1::IBuilder* builder = nvinfer1::createInferBuilder(gLogger); const auto explicitBatch = 1U << static_cast<uint32_t>(nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH); // 创建网络定义 nvinfer1::INetworkDefinition* network = builder->createNetworkV2(explicitBatch); // 创建onnx解析器来填充网络 nvonnxparser::IParser* parser = nvonnxparser::createParser(*network, gLogger); // 读取onnx模型文件 parser->parseFromFile(onnx_file_path.c_str(), 2); for (int i = 0; i < parser->getNbErrors(); ++i) { std::cout << "load error: " << parser->getError(i)->desc() << std::endl; } printf("tensorRT load mask onnx model successfully!!!...n"); // 创建生成器配置对象 nvinfer1::IBuilderConfig* config = builder->createBuilderConfig(); builder->setMaxBatchSize(BATCH_SIZE); // 设置最大batch config->setMaxWorkspaceSize(16 * (1 << 20)); // 设置最大工作空间大小 // 设置模型输出精度 if (type == 1) { config->setFlag(nvinfer1::BuilderFlag::kFP16); } if (type == 2) { config->setFlag(nvinfer1::BuilderFlag::kINT8); } // 创建推理引擎 nvinfer1::ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config); // 将推理引擎保存到本地 std::cout << "try to save engine file now~~~" << std::endl; std::ofstream file_ptr(engine_file_path, std::ios::binary); if (!file_ptr) { std::cerr << "could not open plan output file" << std::endl; return; } // 将模型转化为文件流数据 nvinfer1::IHostMemory* model_stream = engine->serialize(); // 将文件保存到本地 file_ptr.write(reinterpret_cast<const char*>(model_stream->data()), model_stream->size()); // 销毁创建的对象 model_stream->destroy(); engine->destroy(); network->destroy(); parser->destroy(); std::cout << "convert onnx model to TensorRT engine model successfully!" << std::endl; } // 模型推理:包括创建GPU显存缓冲区、配置模型输入及模型推理 void doInference(IExecutionContext& context, const void* input, float* output, int batchSize) { //auto start = chrono::high_resolution_clock::now(); // DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host CHECK(cudaMemcpyAsync(gpu_buffers[inputIndex], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream)); // context.enqueue(batchSize, buffers, stream, nullptr); context.enqueueV2(gpu_buffers, stream, nullptr); //auto end1 = std::chrono::high_resolution_clock::now(); //auto ms1 = std::chrono::duration_cast<std::chrono::microseconds>(end1 - start); //std::cout << "推理: " << (ms1 / 1000.0).count() << "ms" << std::endl; CHECK(cudaMemcpyAsync(output, gpu_buffers[outputIndex], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream)); //size_t dest_pitch = 0; //CHECK(cudaMemcpy2D(output, dest_pitch, buffers[outputIndex], batchSize * sizeof(float), batchSize, OUTPUT_SIZE, cudaMemcpyDeviceToHost)); cudaStreamSynchronize(stream); //auto end2 = std::chrono::high_resolution_clock::now(); //auto ms2 = std::chrono::duration_cast<std::chrono::microseconds>(end2 - start)/100.0; //std::cout << "cuda-host: " << (ms2 / 1000.0).count() << "ms" << std::endl; } // 结束推理,释放资源 void GpuMemoryRelease() { // Release stream and buffers cudaStreamDestroy(stream); CHECK(cudaFree(gpu_buffers[0])); CHECK(cudaFree(gpu_buffers[1])); // Destroy the engine context->destroy(); engine->destroy(); runtime->destroy(); } // GoogLeNet模型初始化 void ModelInit(std::string enginePath, int deviceId) { // 设置GPU cudaSetDevice(deviceId); // 从本地读取engine模型文件 char* trtModelStream{ nullptr }; size_t size{ 0 }; std::ifstream file(enginePath, std::ios::binary); if (file.good()) { file.seekg(0, file.end); // 将读指针从文件末尾开始移动0个字节 size = file.tellg(); // 返回读指针的位置,此时读指针的位置就是文件的字节数 file.seekg(0, file.beg); // 将读指针从文件开头开始移动0个字节 trtModelStream = new char[size]; assert(trtModelStream); file.read(trtModelStream, size); file.close(); } // 创建推理运行环境实例 runtime = createInferRuntime(gLogger); assert(runtime != nullptr); // 反序列化模型 engine = runtime->deserializeCudaEngine(trtModelStream, size, nullptr); assert(engine != nullptr); // 创建推理上下文 context = engine->createExecutionContext(); assert(context != nullptr); delete[] trtModelStream; // Create stream CHECK(cudaStreamCreate(&stream)); // Pointers to input and output device buffers to pass to engine. // Engine requires exactly IEngine::getNbBindings() number of buffers. assert(engine.getNbBindings() == 2); // In order to bind the buffers, we need to know the names of the input and output tensors. // Note that indices are guaranteed to be less than IEngine::getNbBindings() const int inputIndex = engine->getBindingIndex(INPUT_BLOB_NAME); const int outputIndex = engine->getBindingIndex(OUTPUT_BLOB_NAME); // Create GPU buffers on device CHECK(cudaMalloc(&gpu_buffers[inputIndex], BATCH_SIZE * 3 * INPUT_H * INPUT_W * sizeof(float))); CHECK(cudaMalloc(&gpu_buffers[outputIndex], BATCH_SIZE * OUTPUT_SIZE * sizeof(float))); // 读取标签名称 ifstream fin(classNamesPath.c_str()); string strLine; classNameList.clear(); while (getline(fin, strLine)) classNameList.push_back(strLine); fin.close(); } // 单图推理 bool ModelInference(cv::Mat srcImage, std::string& className, float& confidence) { auto start = chrono::high_resolution_clock::now(); cv::Mat image = srcImage.clone(); // 预处理(尺寸变换、通道变换、归一化) cv::cvtColor(image, image, cv::COLOR_BGR2RGB); cv::resize(image, image, cv::Size(224, 224)); image.convertTo(image, CV_32FC3, 1.0 / 255.0); cv::Scalar mean(0.485, 0.456, 0.406); cv::Scalar std(0.229, 0.224, 0.225); cv::subtract(image, mean, image); cv::divide(image, std, image); // cv::Mat blob = cv::dnn::blobFromImage(image); // 下边代码比上边blobFromImages速度更快 for (int r = 0; r < INPUT_H; r++) { float* rowData = image.ptr<float>(r); for (int c = 0; c < INPUT_W; c++) { mydata[0 * INPUT_H * INPUT_W + r * INPUT_W + c] = rowData[CHANNEL * c]; mydata[1 * INPUT_H * INPUT_W + r * INPUT_W + c] = rowData[CHANNEL * c + 1]; mydata[2 * INPUT_H * INPUT_W + r * INPUT_W + c] = rowData[CHANNEL * c + 2]; } } // 模型推理 // doInference(*context, blob.data, prob, BATCH_SIZE); doInference(*context, mydata, prob, BATCH_SIZE); // 推理结果后处理 cv::Mat preds = cv::Mat(BATCH_SIZE, OUTPUT_SIZE, CV_32FC1, (float*)prob); softmax(preds, preds); Point minLoc, maxLoc; double minValue = 0, maxValue = 0; cv::minMaxLoc(preds, &minValue, &maxValue, &minLoc, &maxLoc); int labelIndex = maxLoc.x; double probability = maxValue; className = classNameList[labelIndex]; confidence = probability; std::cout << "class:" << className << endl << "confidence:" << confidence << endl; auto end = chrono::high_resolution_clock::now(); auto ms = chrono::duration_cast<std::chrono::microseconds>(end - start); std::cout << "Inference time by TensorRT:" << (ms / 1000.0).count() << "ms" << std::endl; return 0; } // GoogLeNet模型推理 bool ModelInference_Batch(std::vector<cv::Mat> srcImages, std::vector<std::string>& classNames, std::vector<float>& confidences) { auto start = std::chrono::high_resolution_clock::now(); if (srcImages.size() != BATCH_SIZE) return false; // 预处理(尺寸变换、通道变换、归一化) std::vector<cv::Mat> images; for (size_t i = 0; i < srcImages.size(); i++) { cv::Mat image = srcImages[i].clone(); cv::cvtColor(image, image, cv::COLOR_BGR2RGB); cv::resize(image, image, cv::Size(224, 224)); image.convertTo(image, CV_32FC3, 1.0 / 255.0); cv::Scalar mean(0.485, 0.456, 0.406); cv::Scalar std(0.229, 0.224, 0.225); cv::subtract(image, mean, image); cv::divide(image, std, image); images.push_back(image); } // 图像转blob格式 // cv::Mat blob = cv::dnn::blobFromImages(images); // 下边代码比上边blobFromImages速度更快 for (int b = 0; b < BATCH_SIZE; b++) { cv::Mat image = images[b]; for (int r = 0; r < INPUT_H; r++) { float* rowData = image.ptr<float>(r); for (int c = 0; c < INPUT_W; c++) { mydata[b * CHANNEL * INPUT_H * INPUT_W + 0 * INPUT_H * INPUT_W + r * INPUT_W + c] = rowData[CHANNEL * c]; mydata[b * CHANNEL * INPUT_H * INPUT_W + 1 * INPUT_H * INPUT_W + r * INPUT_W + c] = rowData[CHANNEL * c + 1]; mydata[b * CHANNEL * INPUT_H * INPUT_W + 2 * INPUT_H * INPUT_W + r * INPUT_W + c] = rowData[CHANNEL * c + 2]; } } } auto end1 = std::chrono::high_resolution_clock::now(); auto ms1 = std::chrono::duration_cast<std::chrono::microseconds>(end1 - start); std::cout << "PreProcess time: " << (ms1 / 1000.0).count() << "ms" << std::endl; // 执行推理 doInference(*context, mydata, prob, BATCH_SIZE); auto end2 = std::chrono::high_resolution_clock::now(); auto ms2 = std::chrono::duration_cast<std::chrono::microseconds>(end2 - end1); std::cout << "Inference time: " << (ms2 / 1000.0).count() << "ms" << std::endl; // 推理结果后处理 cv::Mat result = cv::Mat(BATCH_SIZE, OUTPUT_SIZE, CV_32FC1, (float*)prob); softmax(result, result); for (int r = 0; r < BATCH_SIZE; r++) { cv::Mat scores = result.row(r).clone(); cv::Point minLoc, maxLoc; double minValue = 0, maxValue = 0; cv::minMaxLoc(scores, &minValue, &maxValue, &minLoc, &maxLoc); int labelIndex = maxLoc.x; double probability = maxValue; classNames.push_back(classNameList[labelIndex]); confidences.push_back(probability); } auto end3 = std::chrono::high_resolution_clock::now(); auto ms3 = std::chrono::duration_cast<std::chrono::microseconds>(end3 - end2); std::cout << "PostProcess time: " << (ms3 / 1000.0).count() << "ms" << std::endl; auto ms = std::chrono::duration_cast<std::chrono::microseconds>(end3 - start); std::cout << "TensorRT batch" << BATCH_SIZE << " 推理时间:" << (ms / 1000.0).count() << "ms" << std::endl; return true; } int main(int argc, char** argv) { // onnx转engine // onnx_to_engine(onnxPath, enginePath, 0); // 模型初始化 ModelInit(enginePath, 0); // 读取图像 vector<string> filenames; cv::glob(imagePath, filenames); // 单图推理测试 for (int n = 0; n < filenames.size(); n++) { // 重复100次,计算平均时间 auto start = chrono::high_resolution_clock::now(); cv::Mat src = imread(filenames[n]); std::string className; float confidence; for (int i = 0; i < 101; i++) { if (i == 1) start = chrono::high_resolution_clock::now(); ModelInference(src, className, confidence); } auto end = chrono::high_resolution_clock::now(); auto ms = chrono::duration_cast<std::chrono::microseconds>(end - start) / 100; std::cout << "TensorRT 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl; } // 批量(动态batch)推理测试 std::vector<cv::Mat> srcImages; int okNum = 0, ngNum = 0; for (int n = 0; n < filenames.size(); n++) { cv::Mat image = imread(filenames[n]); srcImages.push_back(image); if ((n + 1) % BATCH_SIZE == 0 || n == filenames.size() - 1) { // 重复100次,计算平均时间 auto start = chrono::high_resolution_clock::now(); for (int i = 0; i < 101; i++) { if (i == 1) start = chrono::high_resolution_clock::now(); std::vector<std::string> classNames; std::vector<float> confidences; ModelInference_Batch(srcImages, classNames, confidences); for (int j = 0; j < classNames.size(); j++) { if (classNames[j] == "0") okNum++; else ngNum++; } } srcImages.clear(); auto end = chrono::high_resolution_clock::now(); auto ms = chrono::duration_cast<std::chrono::microseconds>(end - start) / 100; std::cout << "TensorRT " << BATCH_SIZE << " 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl; } } GpuMemoryRelease(); std::cout << "all_num = " << filenames.size() << endl << "okNum = " << okNum << endl << "ngNum = " << ngNum << endl; return 0; }
5.3 fp32、fp16模型对比测试
fp16模型推理结果几乎和fp32一致,但是却较大的节约了显存和内存占用,同时推理速度也有明显的提升。
6. OpenVINO部署GoogLeNet
6.1 推理过程及代码
代码:
/* 推理过程 * 1. Create OpenVINO-Runtime Core * 2. Compile Model * 3. Create Inference Request * 4. Set Inputs * 5. Start Inference * 6. Process inference Results */ #include <opencv2/opencv.hpp> #include <openvino/openvino.hpp> #include <inference_engine.hpp> #include <chrono> #include <fstream> using namespace std; using namespace InferenceEngine; using namespace cv; std::string onnxPath = "E:/inference-master/models/GoogLeNet/googlenet-pretrained_batch1.onnx"; std::string imagePath = "E:/inference-master/images/catdog"; std::string classNamesPath = "E:/inference-master/imagenet-classes.txt"; // 标签名称列表(类名) ov::InferRequest inferRequest; std::vector<std::string> classNameList; // 标签名,可以从文件读取 int batchSize = 1; // softmax,输入输出为数组 std::vector<float> softmax(std::vector<float> input) { float total = 0; for (auto x : input) total += exp(x); std::vector<float> result; for (auto x : input) result.push_back(exp(x) / total); return result; } // softmax,输入输出为Mat int softmax(const cv::Mat& src, cv::Mat& dst) { float max = 0.0; float sum = 0.0; max = *max_element(src.begin<float>(), src.end<float>()); cv::exp((src - max), dst); sum = cv::sum(dst)[0]; dst /= sum; return 0; } // 模型初始化 void ModelInit(string onnxPath) { // Step 1: 创建一个Core对象 ov::Core core; // 打印当前设备 std::vector<std::string> availableDevices = core.get_available_devices(); for (int i = 0; i < availableDevices.size(); i++) printf("supported device name: %sn", availableDevices[i].c_str()); // Step 2: 读取模型 std::shared_ptr<ov::Model> model = core.read_model(onnxPath); // Step 3: 加载模型到CPU ov::CompiledModel compiled_model = core.compile_model(model, "CPU"); // 设置推理实例并发数为5个 //core.set_property("CPU", ov::streams::num(10)); // 设置推理实例数为自动分配 //core.set_property("CPU", ov::streams::num(ov::streams::AUTO)); // 推理实例数按计算资源平均分配 //core.set_property("CPU", ov::streams::num(ov::streams::NUMA)); // 设置推理实例的线程并发数为10 // core.set_property("CPU", ov::inference_num_threads(20)); // Step 4: 创建推理请求 inferRequest = compiled_model.create_infer_request(); // 读取标签名称 ifstream fin(classNamesPath.c_str()); string strLine; classNameList.clear(); while (getline(fin, strLine)) classNameList.push_back(strLine); fin.close(); } // 单图推理 void ModelInference(cv::Mat srcImage, std::string& className, float& confidence ) { auto start = chrono::high_resolution_clock::now(); // Step 5: 将输入数据填充到输入tensor // 通过索引获取输入tensor ov::Tensor input_tensor = inferRequest.get_input_tensor(0); // 通过名称获取输入tensor // ov::Tensor input_tensor = infer_request.get_tensor("input"); // 预处理 cv::Mat image = srcImage.clone(); cv::cvtColor(image, image, cv::COLOR_BGR2RGB); resize(image, image, Size(224, 224)); image.convertTo(image, CV_32FC3, 1.0 / 255.0); Scalar mean(0.485, 0.456, 0.406); Scalar std(0.229, 0.224, 0.225); subtract(image, mean, image); divide(image, std, image); // HWC -> NCHW ov::Shape tensor_shape = input_tensor.get_shape(); const size_t channels = tensor_shape[1]; const size_t height = tensor_shape[2]; const size_t width = tensor_shape[3]; float* image_data = input_tensor.data<float>(); for (size_t r = 0; r < height; r++) { for (size_t c = 0; c < width * channels; c++) { int w = (r * width * channels + c) / channels; int mod = (r * width * channels + c) % channels; // 0,1,2 image_data[mod * width * height + w] = image.at<float>(r, c); } } // --------------- Step 6: Start inference --------------- inferRequest.infer(); // --------------- Step 7: Process the inference results --------------- // model has only one output auto output_tensor = inferRequest.get_output_tensor(); float* detection = (float*)output_tensor.data(); ov::Shape out_shape = output_tensor.get_shape(); int batch = output_tensor.get_shape()[0]; int num_classes = output_tensor.get_shape()[1]; cv::Mat result(batch, num_classes, CV_32F, detection); softmax(result, result); Point minLoc, maxLoc; double minValue = 0, maxValue = 0; cv::minMaxLoc(result, &minValue, &maxValue, &minLoc, &maxLoc); int labelIndex = maxLoc.x; double probability = maxValue; auto end = chrono::high_resolution_clock::now(); auto ms = chrono::duration_cast<std::chrono::milliseconds>(end - start); std::cout << "openvino单张推理时间:" << ms.count() << "ms" << std::endl; } // 多图并行推理(动态batch) void ModelInference_Batch(std::vector<cv::Mat> srcImages, std::vector<string>& classNames, std::vector<float>& confidences) { auto start = chrono::high_resolution_clock::now(); // Step 5: 将输入数据填充到输入tensor // 通过索引获取输入tensor ov::Tensor input_tensor = inferRequest.get_input_tensor(0); // 通过名称获取输入tensor // ov::Tensor input_tensor = infer_request.get_tensor("input"); // 预处理(尺寸变换、通道变换、归一化) std::vector<cv::Mat> images; for (size_t i = 0; i < srcImages.size(); i++) { cv::Mat image = srcImages[i].clone(); cv::cvtColor(image, image, cv::COLOR_BGR2RGB); cv::resize(image, image, cv::Size(224, 224)); image.convertTo(image, CV_32FC3, 1.0 / 255.0); cv::Scalar mean(0.485, 0.456, 0.406); cv::Scalar std(0.229, 0.224, 0.225); cv::subtract(image, mean, image); cv::divide(image, std, image); images.push_back(image); } ov::Shape tensor_shape = input_tensor.get_shape(); const size_t batch = tensor_shape[0]; const size_t channels = tensor_shape[1]; const size_t height = tensor_shape[2]; const size_t width = tensor_shape[3]; float* image_data = input_tensor.data<float>(); // 图像转blob格式(速度比下边像素操作方式更快) cv::Mat blob = cv::dnn::blobFromImages(images); memcpy(image_data, blob.data, batch * 3 * height * width * sizeof(float)); // NHWC -> NCHW //for (size_t b = 0; b < batch; b++){ // for (size_t r = 0; r < height; r++) { // for (size_t c = 0; c < width * channels; c++) { // int w = (r * width * channels + c) / channels; // int mod = (r * width * channels + c) % channels; // 0,1,2 // image_data[b * 3 * width * height + mod * width * height + w] = images[b].at<float>(r, c); // } // } //} auto end1 = std::chrono::high_resolution_clock::now(); auto ms1 = std::chrono::duration_cast<std::chrono::microseconds>(end1 - start); std::cout << "PreProcess time: " << (ms1 / 1000.0).count() << "ms" << std::endl; // --------------- Step 6: Start inference --------------- inferRequest.infer(); auto end2 = std::chrono::high_resolution_clock::now(); auto ms2 = std::chrono::duration_cast<std::chrono::microseconds>(end2 - end1)/100; std::cout << "Inference time: " << (ms2 / 1000.0).count() << "ms" << std::endl; // --------------- Step 7: Process the inference results --------------- // model has only one output auto output_tensor = inferRequest.get_output_tensor(); float* detection = (float*)output_tensor.data(); ov::Shape out_shape = output_tensor.get_shape(); int num_classes = output_tensor.get_shape()[1]; cv::Mat output(batch, num_classes, CV_32F, detection); int rows = output.size[0]; // batch int cols = output.size[1]; // 类别数(每一个类别的得分) for (int row = 0; row < rows; row++) { cv::Mat scores(1, cols, CV_32FC1, output.ptr<float>(row)); softmax(scores, scores); // 结果归一化 Point minLoc, maxLoc; double minValue = 0, maxValue = 0; cv::minMaxLoc(scores, &minValue, &maxValue, &minLoc, &maxLoc); int labelIndex = maxLoc.x; double probability = maxValue; classNames.push_back(classNameList[labelIndex]); confidences.push_back(probability); } auto end3 = std::chrono::high_resolution_clock::now(); auto ms3 = std::chrono::duration_cast<std::chrono::microseconds>(end3 - end2); std::cout << "PostProcess time: " << (ms3 / 1000.0).count() << "ms" << std::endl; auto ms = chrono::duration_cast<std::chrono::milliseconds>(end3 - start); std::cout << "openvino单张推理时间:" << ms.count() << "ms" << std::endl; } int main(int argc, char** argv) { // 模型初始化 ModelInit(onnxPath); // 读取图像 vector<string> filenames; glob(imagePath, filenames); // 单图推理测试 for (int n = 0; n < filenames.size(); n++) { // 重复100次,计算平均时间 auto start = chrono::high_resolution_clock::now(); for (int i = 0; i < 101; i++) { if (i == 1) start = chrono::high_resolution_clock::now(); cv::Mat src = imread(filenames[n]); std::string className; float confidence; ModelInference(src, className, confidence); } auto end = chrono::high_resolution_clock::now(); auto ms = chrono::duration_cast<std::chrono::microseconds>(end - start) / 100.0; std::cout << "opencv_dnn 单图平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl; } std::vector<cv::Mat> srcImages; for (int i = 0; i < filenames.size(); i++) { cv::Mat image = imread(filenames[i]); srcImages.push_back(image); if ((i + 1) % batchSize == 0 || i == filenames.size() - 1) { // 重复100次,计算平均时间 auto start = chrono::high_resolution_clock::now(); for (int i = 0; i < 101; i++) { if (i == 1) start = chrono::high_resolution_clock::now(); std::vector<std::string> classNames; std::vector<float> confidences; ModelInference_Batch(srcImages, classNames, confidences); } srcImages.clear(); auto end = chrono::high_resolution_clock::now(); auto ms = chrono::duration_cast<std::chrono::microseconds>(end - start) / 100; std::cout << "openvino batch" << batchSize << " 平均推理时间:---------------------" << (ms / 1000.0).count() << "ms" << std::endl; } } return 0; }
注意:OV支持多图并行推理,但是要求转出onnx的时候batch就要使用固定数值。动态batch(即batch=-1)的onnx文件会报错。
6.2 遇到的问题
理论:OpenVINO是基于CPU推理最佳的方式。
实测:在测试OpenVINO的过程中,我们发现OpenVINO推理对于CPU的利用率远没有OpenCV DNN和ONNXRuntime高,这也是随着batch数量增加,OV在CPU上的推理速度反而不如DNN和ORT的主要原因。尝试过网上的多种优化方式,比如设置线程数并发数等等,未取得任何改善。如下图,在OpenVINO推理过程中,始终只有一半的CPU处于活跃状态;而OnnxRuntime或者OpenCV DNN推理时,所有的CPU均处于活跃状态。
7. 四种推理方式对比测试
深度学习领域常用的基于CPU/GPU的推理方式有OpenCV DNN、ONNXRuntime、TensorRT以及OpenVINO。这几种方式的推理过程可以统一用下图来概述。整体可分为模型初始化部分和推理部分,后者包括步骤2-5。
以GoogLeNet模型为例,测得几种推理方式在推理部分的耗时如下:
基于CPU推理:
基于GPU推理:
不论采用何种推理方式,同一网络的前处理和后处理过程基本都是一致的。所以,为了更直观的对比几种推理方式的速度,我们抛去前后处理,只统计图中实际推理部分,即3、4、5这三个过程的执行时间。
同样是GoogLeNet网络,步骤3-5的执行时间对比如下:
注:OpenVINO-CPU测试中始终只使用了一半数量的内核,各种优化设置都没有改善。
最终结论:
- GPU加速首选TensorRT;
- CPU加速,单图推理首选OpenVINO,多图并行推理可选择ONNXRuntime;
- 如果需要兼具CPU和GPU推理功能,可选择ONNXRuntime。
参考资料
1. openvino2022版安装配置与C++SDK开发详解
2. https://github.com/NVIDIA/TensorRT
3. https://github.com/wang-xinyu/tensorrtx
4. 【TensorRT】TensorRT 部署Yolov5模型(C++)
文章来源: 博客园
- 还没有人评论,欢迎说说您的想法!