一、LCD基础知识

1.1 LCD硬件原理

Mini2440裸机开发之LCD基础我们介绍了LCD的硬件原理,有兴趣的可以去看看,这里我们仅仅简述一下LCD的原理。

下图是LCD示意图,里面的每个点就是一个像素点。它里面有一个电子枪,一边移动,一边发出各种颜色的光。用动态图表示如下:

电子枪是如何移动的?

  • 有一条CLK时钟线与LCD相连,每发出一次CLK(高低电平),电子枪就移动一个像素。

颜色如何确定?

  • 由连接LCD的三组线RGB三原色混合而成:R(Red)、G(Green)、B(Blue)确定。

电子枪如何得知应跳到下一行?

  • 有一条HSYNC信号线与LCD相连,每发出一次脉冲(高低电平),电子枪就跳到下一行,该信号叫做行同步信号。

电子枪如何得知应跳到原点?

  • 有一条VSYNC信号线与LCD相连,每发出一次脉冲(高低电平),电子枪就跳到原点,该信号叫做帧同步信号。

RGB线上的数据从何而来?

  • 内存里面划分一块显存(framebuffer),里面存放了要显示的数据,LCD控制器从里面将数据读出来,通过RGB三组线传给电子枪,电子枪再依次打到显示屏上。

前面的信号由谁发给LCD?

  • 由S3C2440里面的LCD控制器来控制发出信号。

工作原理:

  • LCD屏可以看作是由许多像素构成的,比如320*240就是由320*240个像素构成的,每个像素由RGB三色调和,每种颜色又由多个位组成。比如我们的开发板上的LCD,有320*240个像素,每个像素由RGB三色调和,RGB三色位数分别为:565。
  • S3C2440内集成了LCD控制器,LCD控制器外接LCD,每来一个VLCK,就会从左到右在LCD屏幕上显示一个像素的颜色,而这一个个像素的颜色就存放在显存里,在嵌入式领域,一般不会佩戴专门的显存,而是从内存SDRAM中划分出一部分充当显存;
  • HSYNC引脚每发出一个脉冲,表示一行的数据开始发送;
  • VSYNC引脚每发出一个脉冲,表示一帧的数据开始发送。

1.2  frambuffer设备

我们在Mini2440裸机开发之LCD编程(GB2312、ASCII字库制作) 中介绍了如何在LCD显示屏中显示一张图片,其核心步骤就是向framebuffer中写入图片数据。

在linux中,如果我们的系统想使用GUI(图形界面接口),这时LCD设备驱动程序就应该编写成frambuffer接口,而不是像裸机中那样只编写操作底层的LCD控制器接口。

framebuffer是linux系统为显示设备提供的一个用户接口,它将显示缓冲区抽象,屏蔽图像硬件的底层差异,允许上层应用程序在图形模式下直接对显示缓冲区进行操作,用户应用程序可以通过framebuffer透明地访问不同类型的显示设备。

linux抽象出framebuffer这个帧缓冲区可以供用户应用程序直接读写,通过更改framebuffer中的内容,就可以立刻显示在LCD显示屏上。

framebuffer是一个标准的字符设备,主设备号是29,次设备号根据缓冲区的数目而定。framebuffer对应/dev/fb%d设备文件。

对用户程序而言,framebuffer设备它和/dev下面的其它设备没有什么区别,用户可以把frameBuffer看成一块内存,既可以写,又可以读。显示器将根据内存数据显示对应的图像界面,这一切都由framebuffer设备驱动来完成。

注意:如果“framebuffer设备”你理解起来比较变扭,你就把它当做LCD设备即可,实际上我认为他们就是一个意思,只是叫法不一样。

1.3 实现思路

我们在介绍linux framebuffer驱动实现框架之前,我们试想一下,如果让我们按照之前所学的知识来实现framebuffer设备驱动我们会怎么做呢?

  • 首先我们会动态注册设备编号;
  • 初始化一个字符设备,并注册设备的file_operations;
  • 创建字符设备节点;
  • 编写file_operations成员函数open、write等函数;

这么做当然也是可以的,不过这么存在一个问题,如果我们需要同时注册多个framebuffer设备,并且每个framebuffer设备具有很多共性的东西,他们的设备操作函数基本相同,只是LCD的屏幕尺寸、LCD控制器时序参数等信息存在差异,那我们应该如何进行抽象,屏蔽不同framebuffer之间的差异呢。

实际上如果采用面向对象编程的话,我们可以这么干,我们抽象出frambebufer设备接口,然后实现一个抽象类继承该接口,在抽象类中实现一个些共性属性和方法,大致如下:

实际上linux内核也是这么干的,只不过由于C不支持面向对象,在linux系统中,当系统接入若干个不同型号的LCD设备时,linux内核做了一层抽象,使用fb_info结构体来表示每一个LCD设备的信息以及设备操作方法。

二、framebuffer设备驱动框架图

framebuffer设备驱动在linux系统框架如下图:

从上图可以看出frambebuffer设备驱动主要由两部分组成:

  • fbmem.c:为应用程序提供了对frambebuffer设备操作的系统调用,同时为硬件层提供了注册framebuffer设备的接口,比如register_frambebuffer;
  • xxxfb.c:主要实现了framebuffer设备的注册,实际上就是填充fb_info结构体,关于该结构的含义我们后面介绍。

通过引入fb_info的形式,将硬件相关的部分与文件设备操作分离开,增加了内核代码的稳定性。我们只需调用register_framebuffer函数注册一个新的fb_info结构体,即可向内核新增一个framebuffer设备。

三、基础数据结构

3.1 fb_info结构体

struct fb_info定义在include/linux/fb.h文件中,用于保存我们framebuffer设备信息,其内部提供了对framebuffer设备操作的函数指针:

struct fb_info {
        atomic_t count;
        int node;
        int flags;
        /*
         * -1 by default, set to a FB_ROTATE_* value by the driver, if it knows
         * a lcd is not mounted upright and fbcon should rotate to compensate.
         */
        int fbcon_rotate_hint;
        struct mutex lock;              /* Lock for open/release/ioctl funcs */
        struct mutex mm_lock;           /* Lock for fb_mmap and smem_* fields */
        struct fb_var_screeninfo var;   /* Current var */
        struct fb_fix_screeninfo fix;   /* Current fix */
        struct fb_monspecs monspecs;    /* Current Monitor specs */
        struct work_struct queue;       /* Framebuffer event queue */
        struct fb_pixmap pixmap;        /* Image hardware mapper */
        struct fb_pixmap sprite;        /* Cursor hardware mapper */
        struct fb_cmap cmap;            /* Current cmap */
        struct list_head modelist;      /* mode list */
        struct fb_videomode *mode;      /* current mode */

#if IS_ENABLED(CONFIG_FB_BACKLIGHT)
        /* assigned backlight device */
        /* set before framebuffer registration,
           remove after unregister */
        struct backlight_device *bl_dev;

        /* Backlight level curve */
        struct mutex bl_curve_mutex;
        u8 bl_curve[FB_BACKLIGHT_LEVELS];
#endif
#ifdef CONFIG_FB_DEFERRED_IO
        struct delayed_work deferred_work;
        struct fb_deferred_io *fbdefio;
#endif

        struct fb_ops *fbops;
        struct device *device;          /* This is the parent */
        struct device *dev;             /* This is this fb device */
        int class_flag;                    /* private sysfs flags */
#ifdef CONFIG_FB_TILEBLITTING
        struct fb_tile_ops *tileops;    /* Tile Blitting */
#endif
        union {
                char __iomem *screen_base;      /* Virtual address */
                char *screen_buffer;
        };
        unsigned long screen_size;      /* Amount of ioremapped VRAM or 0 */
        void *pseudo_palette;           /* Fake palette of 16 colors */
#define FBINFO_STATE_RUNNING    0
#define FBINFO_STATE_SUSPENDED  1
        u32 state;                      /* Hardware state i.e suspend */
        void *fbcon_par;                /* fbcon use-only private area */
        /* From here on everything is device dependent */
        void *par;
        /* we need the PCI or similar aperture base/size not
           smem_start/size as smem_start may just be an object
           allocated inside the aperture so may not actually overlap */
        struct apertures_struct {
                unsigned int count;
                struct aperture {
                        resource_size_t base;
                        resource_size_t size;
                } ranges[0];
        } *apertures;

        bool skip_vt_switch; /* no VT switch on suspend/resume required */
};

部分参数含义如下:

  • count:fb_info的引用计数,fb_open时使其+1,release时使其-1,为0时销毁;
  • node:全局变量registered_fb中的索引值,注册的时候分配,通过node可以索引fb_info;
  • flags:一些标志位,有关于硬件加速的,大小端,fb的内存位置(设备或者内存),具体硬件加速的方法,表明哪个使用了硬件加速;
  • var:描述的是LCD屏幕的可变参数,包括可见的分辨率,Bpp(bits_per_pixel),还有具体的时钟信号,包括bp,fp,vsync,hsync等,可以通过应用层设置也可以驱动层配置,相关设置时序的工具有fbset,还有相关的一些调色板配置;
  • fix:描述的是LCD屏幕的不可参数,不能在用户层更改。包括framebuffer缓冲区的区里起始位置(一般是显示控制器DMA起始地址,smem_start),framebuffer的长度(单位为字节,smem_len);
  • monspecs:描述的是显示器的一些参数,时序,生产日期等,一般这种信息描述在显示器中的EDID中,通过解析EDID来填充此参数;
  • queue:事件队列;
  • pixmap,sprite(光标)都是像素图,注册framebuffer的时候会默认申请;
  • cmap:设备独立的 colormap 信息,可以通过 ioctl 的 FBIOGETCMAP 和 FBIOPUTCMAP 命令设置 colormap;
  • modelist:将var参数转化成video mode,然后存入这个链表;
  • mode:一些时序,刷新率扫描方式(vmode)(隔行,逐行),极性(sync);
  • CONFIG_FB_BACKLIGHT:有关于背光曲线以及背光设备注册,需要注意的是需要在注册framebuffer之前就对其初始化;
  • CONFIG_FB_DEFERRED_IO:延迟IO,使用缺页中断的原理操作,减少FBIOPAN_DISPLAY带来的系统调用开支;
  • screen_base/screen_buffer:framebuffer缓冲区虚拟地址,u8类型,对应的物理地址保存在fix.smem_start中;
  • screen_size:framebuffer缓冲区大小;
  • fbops:提供具体的fb操作函数,主要是通过fbmem.c中提供的文件操作函数,间接调用fb_ops,主要的操作有fb_check_var,fb_pan_display,fb_mmap,等,以下三个函数提供了绘图的操作,可以使用系统中的绘图函数,也可以重写硬件加速的绘图函数;
  • device:fb_info的设备父节点,对应即/sys/device/xxx/fb_info;
  • dev:设备指针,注册framebuffer时创建;
  • pseudo_palette:伪调色板;
  • state:硬件状态,在fbmem中会设置成suspend以及resume;
  • skip_vt_switch:关于VT switch,是与console切换以及PM相关的;

3.2 fb_info标志位

fb_info标志位定义如下:

/* FBINFO_* = fb_info.flags bit flags */
#define FBINFO_DEFAULT          0
#define FBINFO_HWACCEL_DISABLED 0x0002
        /* When FBINFO_HWACCEL_DISABLED is set:
         *  Hardware acceleration is turned off.  Software implementations
         *  of required functions (copyarea(), fillrect(), and imageblit())
         *  takes over; acceleration engine should be in a quiescent state */

/* hints */
#define FBINFO_VIRTFB           0x0004 /* FB is System RAM, not device. */
#define FBINFO_PARTIAL_PAN_OK   0x0040 /* otw use pan only for double-buffering */
#define FBINFO_READS_FAST       0x0080 /* soft-copy faster than rendering */

/* hardware supported ops */
/*  semantics: when a bit is set, it indicates that the operation is
 *   accelerated by hardware.
 *  required functions will still work even if the bit is not set.
 *  optional functions may not even exist if the flag bit is not set.
 */
#define FBINFO_HWACCEL_NONE             0x0000
#define FBINFO_HWACCEL_COPYAREA         0x0100 /* required */
#define FBINFO_HWACCEL_FILLRECT         0x0200 /* required */
#define FBINFO_HWACCEL_IMAGEBLIT        0x0400 /* required */
#define FBINFO_HWACCEL_ROTATE           0x0800 /* optional */
#define FBINFO_HWACCEL_XPAN             0x1000 /* optional */
#define FBINFO_HWACCEL_YPAN             0x2000 /* optional */
#define FBINFO_HWACCEL_YWRAP            0x4000 /* optional */

#define FBINFO_MISC_USEREVENT          0x10000 /* event request
                                                  from userspace */
#define FBINFO_MISC_TILEBLITTING       0x20000 /* use tile blitting */

/* A driver may set this flag to indicate that it does want a set_par to be
 * called every time when fbcon_switch is executed. The advantage is that with
 * this flag set you can really be sure that set_par is always called before
 * any of the functions dependent on the correct hardware state or altering
 * that state, even if you are using some broken X releases. The disadvantage
 * is that it introduces unwanted delays to every console switch if set_par
 * is slow. It is a good idea to try this flag in the drivers initialization
 * code whenever there is a bug report related to switching between X and the
 * framebuffer console.
 */
#define FBINFO_MISC_ALWAYS_SETPAR   0x40000

/* where the fb is a firmware driver, and can be replaced with a proper one */
#define FBINFO_MISC_FIRMWARE        0x80000
/*
 * Host and GPU endianness differ.
 */
#define FBINFO_FOREIGN_ENDIAN   0x100000
/*
 * Big endian math. This is the same flags as above, but with different
 * meaning, it is set by the fb subsystem depending FOREIGN_ENDIAN flag
 * and host endianness. Drivers should not use this flag.
 */
#define FBINFO_BE_MATH  0x100000
/*
 * Hide smem_start in the FBIOGET_FSCREENINFO IOCTL. This is used by modern DRM
 * drivers to stop userspace from trying to share buffers behind the kernel's
 * back. Instead dma-buf based buffer sharing should be used.
 */
#define FBINFO_HIDE_SMEM_START  0x200000

3.3 fb_ops 

fb_ops里存放时的framebuffer设备操作函数:

/*
 * Frame buffer operations
 *
 * LOCKING NOTE: those functions must _ALL_ be called with the console
 * semaphore held, this is the only suitable locking mechanism we have
 * in 2.6. Some may be called at interrupt time at this point though.
 *
 * The exception to this is the debug related hooks.  Putting the fb
 * into a debug state (e.g. flipping to the kernel console) and restoring
 * it must be done in a lock-free manner, so low level drivers should
 * keep track of the initial console (if applicable) and may need to
 * perform direct, unlocked hardware writes in these hooks.
 */

struct fb_ops {
        /* open/release and usage marking */
        struct module *owner;
        int (*fb_open)(struct fb_info *info, int user);
        int (*fb_release)(struct fb_info *info, int user);

        /* For framebuffers with strange non linear layouts or that do not
         * work with normal memory mapped access
         */
        ssize_t (*fb_read)(struct fb_info *info, char __user *buf,
                           size_t count, loff_t *ppos);
        ssize_t (*fb_write)(struct fb_info *info, const char __user *buf,
                            size_t count, loff_t *ppos);

        /* checks var and eventually tweaks it to something supported,
         * DO NOT MODIFY PAR */
        int (*fb_check_var)(struct fb_var_screeninfo *var, struct fb_info *info);

        /* set the video mode according to info->var */
        int (*fb_set_par)(struct fb_info *info);

        /* set color register */
        int (*fb_setcolreg)(unsigned regno, unsigned red, unsigned green,
                            unsigned blue, unsigned transp, struct fb_info *info);

        /* set color registers in batch */
        int (*fb_setcmap)(struct fb_cmap *cmap, struct fb_info *info);

        /* blank display */
        int (*fb_blank)(int blank, struct fb_info *info);

        /* pan display */
        int (*fb_pan_display)(struct fb_var_screeninfo *var, struct fb_info *info);

        /* Draws a rectangle */
        void (*fb_fillrect) (struct fb_info *info, const struct fb_fillrect *rect);
        /* Copy data from area to another */
        void (*fb_copyarea) (struct fb_info *info, const struct fb_copyarea *region);
        /* Draws a image to the display */
        void (*fb_imageblit) (struct fb_info *info, const struct fb_image *image);

        /* Draws cursor */
        int (*fb_cursor) (struct fb_info *info, struct fb_cursor *cursor);

        /* wait for blit idle, optional */
        int (*fb_sync)(struct fb_info *info);

        /* perform fb specific ioctl (optional) */
        int (*fb_ioctl)(struct fb_info *info, unsigned int cmd,
                        unsigned long arg);

        /* Handle 32bit compat ioctl (optional) */
        int (*fb_compat_ioctl)(struct fb_info *info, unsigned cmd,
                        unsigned long arg);

        /* perform fb specific mmap */
        int (*fb_mmap)(struct fb_info *info, struct vm_area_struct *vma);

        /* get capability given var */
        void (*fb_get_caps)(struct fb_info *info, struct fb_blit_caps *caps,
                            struct fb_var_screeninfo *var);

        /* teardown any resources to do with this framebuffer */
        void (*fb_destroy)(struct fb_info *info);

        /* called at KDB enter and leave time to prepare the console */
        int (*fb_debug_enter)(struct fb_info *info);
        int (*fb_debug_leave)(struct fb_info *info);
};

四、fbmem.c源码分析

fbmem.c是framebuffer设备驱动的核心,它向上给应用程序提供了系统调用的接口,向下对特定的硬件提供了设备注册接口。

fbmem.c位于drivers/video/fbdev/core路径下。我们可以在该文件定位到驱动模块的入口和出口:

module_init(fbmem_init);
module_exit(fbmem_exit);

4.1 入口函数

我们定位到fbmem.c的入口函数,也就是fbmem_init:

/**
 *      fbmem_init - init frame buffer subsystem
 *
 *      Initialize the frame buffer subsystem.
 *
 *      NOTE: This function is _only_ to be called by drivers/char/mem.c.
 *
 */

static int __init
fbmem_init(void)
{
        int ret;

        if (!proc_create_seq("fb", 0, NULL, &proc_fb_seq_ops))
                return -ENOMEM;

        ret = register_chrdev(FB_MAJOR, "fb", &fb_fops);
        if (ret) {
                printk("unable to get major %d for fb devsn", FB_MAJOR);
                goto err_chrdev;
        }

        fb_class = class_create(THIS_MODULE, "graphics");
        if (IS_ERR(fb_class)) {
                ret = PTR_ERR(fb_class);
                pr_warn("Unable to create fb class; errno = %dn", ret);
                fb_class = NULL;
                goto err_class;
        }

        fb_console_init();

        return 0;

err_class:
        unregister_chrdev(FB_MAJOR, "fb");
err_chrdev:
        remove_proc_entry("fb", NULL);
        return ret;
}

简要分析一下该函数执行流程:

  • 创建/proc/fb文件;

  • 创建字符设备fb,主设备编号为FB_MAJOR(29),注册file_operations结构体fb_fops;

  • 调用class_create在/sys/class目录下创建graphics这个类,但是此时并没有调用device_create在/dev下创建设备节点 ;

可以通过如下命令查看字符设备:

root@zhengyang:/work/sambashare/linux-5.2.8# cat /proc/devices
Character devices:
  1 mem
  4 /dev/vc/0
  4 tty
  4 ttyS
  5 /dev/tty
  5 /dev/console
  5 /dev/ptmx
  5 ttyprintk
  6 lp
  7 vcs
 10 misc
 13 input
 14 sound/midi
 14 sound/dmmidi
 21 sg
 29 fb  // 这个名字来自register_chrdev函数第二个参数
 89 i2c

可以看到,确实是创建了主设备号为29的"fb"字符设备,而这里还没有创建设备节点,后面会提到,内核将该工作放到register_framebuffer函数里了。

4.2 fb_fops

我们再来看看file_operations结构体fb_fops:

static const struct file_operations fb_fops = {
        .owner =        THIS_MODULE,
        .read =         fb_read,
        .write =        fb_write,
        .unlocked_ioctl = fb_ioctl,
#ifdef CONFIG_COMPAT
        .compat_ioctl = fb_compat_ioctl,
#endif
        .mmap =         fb_mmap,
        .open =         fb_open,
        .release =      fb_release,
#if defined(HAVE_ARCH_FB_UNMAPPED_AREA) || 
        (defined(CONFIG_FB_PROVIDE_GET_FB_UNMAPPED_AREA) && 
         !defined(CONFIG_MMU))
        .get_unmapped_area = get_fb_unmapped_area,
#endif
#ifdef CONFIG_FB_DEFERRED_IO
        .fsync =        fb_deferred_io_fsync,
#endif
        .llseek =       default_llseek,
};

下面我们来一一分析这些成员函数。

4.3 fb_open

static int
fb_open(struct inode *inode, struct file *file)
__acquires(&info->lock)
__releases(&info->lock)
{
        int fbidx = iminor(inode);       // 获取设备节点的次设备号
        struct fb_info *info;            // 定义fb_info指针
        int res = 0;

        info = get_fb_info(fbidx);       // 根据次设备编号获取fb_info
        if (!info) {
                request_module("fb%d", fbidx);
                info = get_fb_info(fbidx);
                if (!info)
                        return -ENODEV;
        }
        if (IS_ERR(info))
                return PTR_ERR(info);

        mutex_lock(&info->lock);               // 获取互斥锁
        if (!try_module_get(info->fbops->owner)) {
                res = -ENODEV;
                goto out;
        }
        file->private_data = info;
        if (info->fbops->fb_open) {
                res = info->fbops->fb_open(info,1);   
                if (res)
                        module_put(info->fbops->owner);
        }
#ifdef CONFIG_FB_DEFERRED_IO
        if (info->fbdefio)
                fb_deferred_io_open(info, inode, file);
#endif
out:
        mutex_unlock(&info->lock);             // 释放互斥锁  
        if (res)
                put_fb_info(info);
        return res;
}

这里我们来看一下get_fb_info函数的实现:

static struct fb_info *get_fb_info(unsigned int idx)
{
        struct fb_info *fb_info;

        if (idx >= FB_MAX)
                return ERR_PTR(-ENODEV);

        mutex_lock(&registration_lock);
        fb_info = registered_fb[idx];
        if (fb_info)
                atomic_inc(&fb_info->count);
        mutex_unlock(&registration_lock);

        return fb_info;
}

可以看到get_fb_info函数将registered_fb数组的第idx个元素赋值给了fb_info,registered_fb是一个struct fb_info结构类型的全局数组:

struct fb_info *registered_fb[FB_MAX] __read_mostly;

这和数组会在register_framebuffer函数中赋值。

经过分析,我们最终会发现fb_open执行的是fbops的操作函数中的fbopen函数。

4.4 fb_read

static ssize_t
fb_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
        unsigned long p = *ppos;                    // 读取起始位置
        struct fb_info *info = file_fb_info(file);  // 获取fb_info
        u8 *buffer, *dst;
        u8 __iomem *src;
        int c, cnt = 0, err = 0;
        unsigned long total_size;

        if (!info || ! info->screen_base)
                return -ENODEV;

        if (info->state != FBINFO_STATE_RUNNING)
                return -EPERM;

        if (info->fbops->fb_read)
                return info->fbops->fb_read(info, buf, count, ppos); //执行fbops操作函数里的fb_read函数

        total_size = info->screen_size;       // 屏幕尺寸   假设屏幕大小240*320,每个像素占n字节数 则屏幕尺寸为240*320*n

        if (total_size == 0)
                total_size = info->fix.smem_len;    //frmebuffer缓冲区大小

        if (p >= total_size)
                return 0;

        if (count >= total_size)          // 最多把整个屏幕数据全部读取了
                count = total_size;

        if (count + p > total_size)
                count = total_size - p;

        buffer = kmalloc((count > PAGE_SIZE) ? PAGE_SIZE : count,  // 分配缓冲器 大于一页的话,按页大小读取
                         GFP_KERNEL);
        if (!buffer)
                return -ENOMEM;

        src = (u8 __iomem *) (info->screen_base + p);  // 获取读取起始地址(虚拟地址)

        if (info->fbops->fb_sync)
                info->fbops->fb_sync(info);

        while (count) {
                c  = (count > PAGE_SIZE) ? PAGE_SIZE : count;  
                dst = buffer;
                fb_memcpy_fromfb(dst, src, c);    // 一次从src读取c个字节到dst
                dst += c;
                src += c;

                if (copy_to_user(buf, buffer, c)) {   // 写回用户空间buf中,长度为c
                        err = -EFAULT;
                        break;
                }
                *ppos += c;
                buf += c;
                cnt += c;
                count -= c;
        }

        kfree(buffer); // 释放内存

        return (err) ? err : cnt;
}

可以看到如果提供了fbops操作函数里的fb_read函数,则直接调用info->fbops->fb_read(info, buf, count, ppos)从framebuff缓冲区读取数据。

否则直接从info->screen_base + ppos地址读取count字节数据到buf缓冲区。

4.5 fb_write

static ssize_t
fb_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
{
        unsigned long p = *ppos;   // 写入起始位置
        struct fb_info *info = file_fb_info(file); // 获取fb_info
        u8 *buffer, *src;
        u8 __iomem *dst;
        int c, cnt = 0, err = 0;
        unsigned long total_size;

        if (!info || !info->screen_base)
                return -ENODEV;

        if (info->state != FBINFO_STATE_RUNNING)
                return -EPERM;

        if (info->fbops->fb_write)
                return info->fbops->fb_write(info, buf, count, ppos); // 执行fbops操作函数里的fb_write函数

        total_size = info->screen_size;  // 屏幕尺寸   假设屏幕大小240*320,每个像素占n字节数 则屏幕尺寸为240*320*n

        if (total_size == 0)
                total_size = info->fix.smem_len; //frmebuffer缓冲区大小

        if (p > total_size)
                return -EFBIG;

        if (count > total_size) {
                err = -EFBIG;
                count = total_size;
        }

        if (count + p > total_size) {
                if (!err)
                        err = -ENOSPC;

                count = total_size - p;
        }

        buffer = kmalloc((count > PAGE_SIZE) ? PAGE_SIZE : count,
                         GFP_KERNEL); // 分配缓冲器 大于一页的话,按页大小写入
        if (!buffer)
                return -ENOMEM;

        dst = (u8 __iomem *) (info->screen_base + p); // 获取写入起始地址(虚拟地址)

        if (info->fbops->fb_sync)
                info->fbops->fb_sync(info);

        while (count) {
                c = (count > PAGE_SIZE) ? PAGE_SIZE : count;
                src = buffer;

                if (copy_from_user(src, buf, c)) {  // 从用户空间获取数据到内容
                        err = -EFAULT;
                        break;
                }

                fb_memcpy_tofb(dst, src, c);  // 一次将src中c个字节写到dst
                dst += c;
                src += c;
                *ppos += c;
                buf += c;
                cnt += c;
                count -= c;
        }

        kfree(buffer); // 释放内存

        return (cnt) ? cnt : err;
}

可以看到如果提供了fbops操作函数里的fb_write函数,则直接调用iinfo->fbops->fb_write(info, buf, count, ppos)向framebuffer缓冲区写入数据。

否则直接向从buf中读取count个字节写入nfo->screen_base + ppos地址处。

4.6 fb_mmap

static int
fb_mmap(struct file *file, struct vm_area_struct * vma)
{
        struct fb_info *info = file_fb_info(file);  // 获取fb_info
        struct fb_ops *fb;
        unsigned long mmio_pgoff;
        unsigned long start;
        u32 len;

        if (!info)
                return -ENODEV;
        fb = info->fbops;
        if (!fb)
                return -ENODEV;
        mutex_lock(&info->mm_lock);
        if (fb->fb_mmap) {
                int res;

                /*
                 * The framebuffer needs to be accessed decrypted, be sure
                 * SME protection is removed ahead of the call
                 */
                vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
                res = fb->fb_mmap(info, vma);
                mutex_unlock(&info->mm_lock);
                return res;
        }

        /*
         * Ugh. This can be either the frame buffer mapping, or
         * if pgoff points past it, the mmio mapping.
         */
        start = info->fix.smem_start;  // framebuffer缓冲区起始地址(物理地址)
        len = info->fix.smem_len;      //  framebuffer缓冲区大小
        mmio_pgoff = PAGE_ALIGN((start & ~PAGE_MASK) + len) >> PAGE_SHIFT;
        if (vma->vm_pgoff >= mmio_pgoff) {
                if (info->var.accel_flags) {
                        mutex_unlock(&info->mm_lock);
                        return -EINVAL;
                }

                vma->vm_pgoff -= mmio_pgoff;
                start = info->fix.mmio_start;
                len = info->fix.mmio_len;
        }
        mutex_unlock(&info->mm_lock);

        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
        /*
         * The framebuffer needs to be accessed decrypted, be sure
         * SME protection is removed
         */
        vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
        fb_pgprotect(file, vma, start);

        return vm_iomap_memory(vma, start, len);
}

framebuffer的显示缓冲区位于linux的内核态地址空间。而在linux中,每个应用程序都有自己的虚拟地址空间,在应用程序中是不能直接访问物理缓冲区的。

为此,linux在文件操作file_operations结构中提供了mmap函数,可将文件的内容映射到用户空间。

对应帧缓冲设备,则可以通过映射操作,将屏幕缓冲区的物理地址映射到用户空间的一段虚拟地址中,之后用户就可以通过读写这段虚拟地址访问屏幕缓冲区,在屏幕上绘图。

4.7 register_framebuffer

register_framebuffer函数用于向内核注册framebuffer设备:

/**
 *      register_framebuffer - registers a frame buffer device
 *      @fb_info: frame buffer info structure
 *
 *      Registers a frame buffer device @fb_info.
 *
 *      Returns negative errno on error, or zero for success.
 *
 */
int
register_framebuffer(struct fb_info *fb_info)
{
        int ret;

        mutex_lock(&registration_lock);
        ret = do_register_framebuffer(fb_info);
        mutex_unlock(&registration_lock);

        return ret;
}

在do_register_farmebuffer之前前后加入了互斥锁,可以判断出该操作是线程安全的,我们定位到 do_register_framebuffer函数:

static int do_register_framebuffer(struct fb_info *fb_info)
{
        int i, ret;
        struct fb_event event;
        struct fb_videomode mode;

        if (fb_check_foreignness(fb_info))
                return -ENOSYS;

        ret = do_remove_conflicting_framebuffers(fb_info->apertures,
                                                 fb_info->fix.id,
                                                 fb_is_primary_device(fb_info));
        if (ret)
                return ret;

        if (num_registered_fb == FB_MAX)   // 已达到最大注册设备数
                return -ENXIO;

        num_registered_fb++;               // 已注册设备计数+1
        for (i = 0 ; i < FB_MAX; i++)      // 查找空的数组项 
                if (!registered_fb[i])
                        break;
        fb_info->node = i;               // 设置fb_info在registered_fb数组中的索引号 
        atomic_set(&fb_info->count, 1);  // 引用计数设置为1 
        mutex_init(&fb_info->lock);      // 初始化互斥锁
        mutex_init(&fb_info->mm_lock);   // 初始化互斥锁  

        fb_info->dev = device_create(fb_class, fb_info->device,  // 设备创建是在这里完成的,设备名称为fb%d 可以在/dev下看到fb%d设备 次设备号为i
                                     MKDEV(FB_MAJOR, i), NULL, "fb%d", i);
        if (IS_ERR(fb_info->dev)) {
                /* Not fatal */
                printk(KERN_WARNING "Unable to create device for framebuffer %d; errno = %ldn", i, PTR_ERR(fb_info->dev));
                fb_info->dev = NULL;
        } else
                fb_init_device(fb_info);  // 初始化fb_info部分参数

        if (fb_info->pixmap.addr == NULL) {
                fb_info->pixmap.addr = kmalloc(FBPIXMAPSIZE, GFP_KERNEL);
                if (fb_info->pixmap.addr) {
                        fb_info->pixmap.size = FBPIXMAPSIZE;
                        fb_info->pixmap.buf_align = 1;
                        fb_info->pixmap.scan_align = 1;
                        fb_info->pixmap.access_align = 32;
                        fb_info->pixmap.flags = FB_PIXMAP_DEFAULT;
                }
        }
        fb_info->pixmap.offset = 0;

        if (!fb_info->pixmap.blit_x)
                fb_info->pixmap.blit_x = ~(u32)0;

        if (!fb_info->pixmap.blit_y)
                fb_info->pixmap.blit_y = ~(u32)0;

        if (!fb_info->modelist.prev || !fb_info->modelist.next)
                INIT_LIST_HEAD(&fb_info->modelist);              // 初始化双向链表

        if (fb_info->skip_vt_switch)
                pm_vt_switch_required(fb_info->dev, false);
        else
                pm_vt_switch_required(fb_info->dev, true);

        fb_var_to_videomode(&mode, &fb_info->var);
        fb_add_videomode(&mode, &fb_info->modelist);
        registered_fb[i] = fb_info;                            // 设置数组第i个元素

        event.info = fb_info;
        if (!lockless_register_fb)
                console_lock();
        else
                atomic_inc(&ignore_console_lock_warning);
        if (!lock_fb_info(fb_info)) {
                ret = -ENODEV;
                goto unlock_console;
        }
        ret = 0;

        fb_notifier_call_chain(FB_EVENT_FB_REGISTERED, &event);
        unlock_fb_info(fb_info);
unlock_console:
        if (!lockless_register_fb)
                console_unlock();
        else
                atomic_dec(&ignore_console_lock_warning);
        return ret;
}

do_register_farmebuffer函数首先从registered_fb数组中查找空的数组项,然后填充fb_info结构体,赋给这个空的数组项中。在这里还创建了设备节点(前面创建字符设备未完成的工作)。

从这里我们可以看出,register_framebuffer()函数通过注册各种各样的fb_info,来让内核支持多种framebuffer设备,并且以/dev/fb%d的形式命名。

五、platform设备注册(s3c2410-lcd)

5.1 LCD相关结构体

我们定位到arch/arm/plat-samsung/include/plat/fb-s3c2410.h头文件:

struct s3c2410fb_hw {
        unsigned long   lcdcon1;
        unsigned long   lcdcon2;
        unsigned long   lcdcon3;
        unsigned long   lcdcon4;
        unsigned long   lcdcon5;
};

/* LCD description */
struct s3c2410fb_display {
        /* LCD type */
        unsigned type;

        /* Screen size */
        unsigned short width;
        unsigned short height;

        /* Screen info */
        unsigned short xres;
        unsigned short yres;
        unsigned short bpp;

        unsigned pixclock;              /* pixclock in picoseconds */
        unsigned short left_margin;  /* value in pixels (TFT) or HCLKs (STN) */
        unsigned short right_margin; /* value in pixels (TFT) or HCLKs (STN) */
        unsigned short hsync_len;    /* value in pixels (TFT) or HCLKs (STN) */
        unsigned short upper_margin;    /* value in lines (TFT) or 0 (STN) */
        unsigned short lower_margin;    /* value in lines (TFT) or 0 (STN) */
        unsigned short vsync_len;       /* value in lines (TFT) or 0 (STN) */

        /* lcd configuration registers */
        unsigned long   lcdcon5;
};

struct s3c2410fb_mach_info {

        struct s3c2410fb_display *displays;     /* attached displays info */
        unsigned num_displays;                  /* number of defined displays */
        unsigned default_display;

        /* GPIOs */

        unsigned long   gpcup;
        unsigned long   gpcup_mask;
        unsigned long   gpccon;
        unsigned long   gpccon_mask;
        unsigned long   gpdup;
        unsigned long   gpdup_mask;
        unsigned long   gpdcon;
        unsigned long   gpdcon_mask;

        /* lpc3600 control register */
        unsigned long   lpcsel;
};

这里定义了s3c24xx系列SOC关于LCD相关配置的结构体:

  • s3c2410fb_hw:定义了s3c2440 LCD控制寄存器需要配置的值;
  • s3c2410fb_display:定义了开发板所使用的的LCD描述信息,比如LCD的时序参数、LCD屏的宽、高等;
  • s3c2410fb_mach_info :包含了s3c2410fb_display以及s3c2440 GPIO相关信息;

5.2  结构体全局变量

我们定位到 arch/arm/mach-s3c24xx/mach-smdk2440.c文件,在这个里面我们可以看到LCD芯片时序相关的信息定义:

/* LCD driver info */

static struct s3c2410fb_display smdk2440_lcd_cfg __initdata = {

        .lcdcon5        = S3C2410_LCDCON5_FRM565 |
                          S3C2410_LCDCON5_INVVLINE |
                          S3C2410_LCDCON5_INVVFRAME |
                          S3C2410_LCDCON5_PWREN |
                          S3C2410_LCDCON5_HWSWP,

        .type           = S3C2410_LCDCON1_TFT,

        .width          = 240,
        .height         = 320,

        .pixclock       = 166667, /* 每个像素时长,10^12/VCLK */
        .xres           = 240,
        .yres           = 320,
        .bpp            = 16,
        .left_margin    = 20,
        .right_margin   = 8,
        .hsync_len      = 4,
        .upper_margin   = 8,
        .lower_margin   = 7,
        .vsync_len      = 4,
};

static struct s3c2410fb_mach_info smdk2440_fb_info __initdata = {
        .displays       = &smdk2440_lcd_cfg,
        .num_displays   = 1,
        .default_display = 0,

#if 0
        /* currently setup by downloader */
        .gpccon         = 0xaa940659,
        .gpccon_mask    = 0xffffffff,
        .gpcup          = 0x0000ffff,
        .gpcup_mask     = 0xffffffff,
        .gpdcon         = 0xaa84aaa0,
        .gpdcon_mask    = 0xffffffff,
        .gpdup          = 0x0000faff,
        .gpdup_mask     = 0xffffffff,
#endif

        .lpcsel         = ((0xCE6) & ~7) | 1<<4,
};

可以看到这里声明了全局变量smdk2440_lcd_cfg、smdk2440_fb_info并进行了初始化,如果我们想支持我们LCD的话,实际上只要修改这些配置信息即可。

5.3  smdk2440_machine_init

linux内核启动的时候会根据uboot中设置的机器id执行相应的初始化工作,比如.init_machine、.init_irq:

static void __init smdk2440_machine_init(void)
{
        s3c24xx_fb_set_platdata(&smdk2440_fb_info);  // 设置s3c_device_lcd->dev.platform_data=&smdk2440_fb_info
        s3c_i2c0_set_platdata(NULL);

        platform_add_devices(smdk2440_devices, ARRAY_SIZE(smdk2440_devices));  // s3c2440若干个platform设备注册 usb host controller、lcd、wdt等
        smdk_machine_init();   // s3c24x0系列若干个platform设备注册(通用)
}

MACHINE_START(S3C2440, "SMDK2440")
        /* Maintainer: Ben Dooks <ben-linux@fluff.org> */
        .atag_offset    = 0x100,

        .init_irq       = s3c2440_init_irq,
        .map_io         = smdk2440_map_io,
        .init_machine   = smdk2440_machine_init,
        .init_time      = smdk2440_init_time,
MACHINE_END
5.3.1 s3c24xx_fb_set_platdata

这里我们只关注smdk2440_fb_info相关的代码,我们定位到s3c24xx_fb_set_platdata函数,位于 arch/arm/plat-samsung/devs.c文件中,实际上在这个文件里根据我们内核编译配置的宏,注册不同的platform设备,比如这里我们定义了名字为"s3c2410-lcd"的platform设备:

/* LCD Controller */

#ifdef CONFIG_PLAT_S3C24XX
static struct resource s3c_lcd_resource[] = {
        [0] = DEFINE_RES_MEM(S3C24XX_PA_LCD, S3C24XX_SZ_LCD),  // 定义内存资源 起始地址0x4D000000(LCD相关寄存器基地址)、大小为1M
        [1] = DEFINE_RES_IRQ(IRQ_LCD),
};

struct platform_device s3c_device_lcd = {   // 定义platform设备
        .name           = "s3c2410-lcd",
        .id             = -1,
        .num_resources  = ARRAY_SIZE(s3c_lcd_resource),
        .resource       = s3c_lcd_resource,
        .dev            = {
                .dma_mask               = &samsung_device_dma_mask,
                .coherent_dma_mask      = DMA_BIT_MASK(32),
        }
};

void __init s3c24xx_fb_set_platdata(struct s3c2410fb_mach_info *pd) // pd = &smdk2440_fb_info
{
        struct s3c2410fb_mach_info *npd;

        npd = s3c_set_platdata(pd, sizeof(*npd), &s3c_device_lcd);  // 设置s3c_device_lcd->dev.platform_data=&smdk2440_fb_info
        if (npd) {
                npd->displays = kmemdup(pd->displays,
                        sizeof(struct s3c2410fb_display) * npd->num_displays,
                        GFP_KERNEL);
                if (!npd->displays)
                        printk(KERN_ERR "no memory for LCD display datan");
        } else {
                printk(KERN_ERR "no memory for LCD platform datan");
        }
}
#endif /* CONFIG_PLAT_S3C24XX */

在s3c24xx_fb_set_platdata这里我们调用了s3c_set_platdata函数,该函数设置s3c_device_lcd->dev.platform_data=&smdk2440_fb_info。

5.3.2 s3c_set_platdata

s3c_set_platdata定义在arch/arm/plat-samsung/platformdata.c文件中:

void __init *s3c_set_platdata(void *pd, size_t pdsize,   // pd = &smdk2440_fb_info , pdev = &s3c_device_lcd
                              struct platform_device *pdev)
{
        void *npd;

        if (!pd) {
                /* too early to use dev_name(), may not be registered */
                printk(KERN_ERR "%s: no platform data suppliedn", pdev->name);
                return NULL;
        }

        npd = kmemdup(pd, pdsize, GFP_KERNEL);
        if (!npd)
                return NULL;

        pdev->dev.platform_data = npd;
        return npd;
}

这个函数主要是用来设置pdev->dev的platform_data成员,是个void *类型,可以给平台driver提供各种数据(比如:GPIO引脚等等)。

5.4 platform设备注册

我们已经定义了LCD相关的platform_device设备s3c_device_lcd,并进行了初始化,那platform设备啥时候注册的呢?

我们定位到smdk2440_machine_init中的如下函数:

 platform_add_devices(smdk2440_devices, ARRAY_SIZE(smdk2440_devices));

这里利用platform_add_devices进行若干个platform设备的注册,该函数还是通过调用platform_device_register实现platform设备注册:

/**
 * platform_add_devices - add a numbers of platform devices
 * @devs: array of platform devices to add
 * @num: number of platform devices in array
 */
int platform_add_devices(struct platform_device **devs, int num)
{
        int i, ret = 0;

        for (i = 0; i < num; i++) {
                ret = platform_device_register(devs[i]);
                if (ret) {
                        while (--i >= 0)
                                platform_device_unregister(devs[i]);
                        break;
                }
        }

        return ret;
}

smdk2440_devices中就包含了s3c_device_lcd:

static struct platform_device *smdk2440_devices[] __initdata = {
        &s3c_device_ohci,
        &s3c_device_lcd,
        &s3c_device_wdt,
        &s3c_device_i2c0,
        &s3c_device_iis,
        &smdk2440_device_eth,
};

六、platform驱动注册(s3c2410-lcd)

既然注册了名字为"s3c2410-lcd"的platform设备,那么名字为"s3c2410-lcd"的platform驱动在哪里注册的呢?

其相关代码为drivers/video/fbdev/s3c2410fb.c,在该文件里构建了fb_info结构体。我们可以在该文件定位到驱动模块的入口和出口:

module_init(s3c2410fb_init);
module_exit(s3c2410fb_cleanup);

6.1 入口函数

我们定位到fbmem.c的入口函数,也就是s3c2410fb_init:

int __init s3c2410fb_init(void)
{
        int ret = platform_driver_register(&s3c2410fb_driver);

        if (ret == 0)
                ret = platform_driver_register(&s3c2412fb_driver);

        return ret;
}

看到这里是不是有点意外,这里是通过platform_driver_register函数注册了一个platform驱动。

在plaftrom总线设备驱动模型中,我们知道当内核中有platform设备的.name名称和platform驱动s3c2410fb_driver里driver的name相同,会调用到platform_driver里的成员.probe,在这里就是s3c2410fb_probe函数。

static struct platform_driver s3c2410fb_driver = {
        .probe          = s3c2410fb_probe,
        .remove         = s3c2410fb_remove,
        .suspend        = s3c2410fb_suspend,
        .resume         = s3c2410fb_resume,
        .driver         = {
                .name   = "s3c2410-lcd",
        },
};

6.2 s3c2410fb_probe

static int s3c2410fb_probe(struct platform_device *pdev)
{
        return s3c24xxfb_probe(pdev, DRV_S3C2410);
}

定位到s3c24xxfb_probe:smdk2440_fb_info

static int s3c24xxfb_probe(struct platform_device *pdev,
                           enum s3c_drv_type drv_type)
{
        struct s3c2410fb_info *info;
        struct s3c2410fb_display *display;
        struct fb_info *fbinfo;
        struct s3c2410fb_mach_info *mach_info;
        struct resource *res;
        int ret;
        int irq;
        int i;
        int size;
        u32 lcdcon1;

        mach_info = dev_get_platdata(&pdev->dev);      // 这里实际获取到的就是smdk2440_fb_info,类型为s3c2440fb_mach_info
        if (mach_info == NULL) {
                dev_err(&pdev->dev,
                        "no platform data for lcd, cannot attachn");
                return -EINVAL;
        }

        if (mach_info->default_display >= mach_info->num_displays) { // 默认使用的LCD索引号 >= 支持的LCD总数
                dev_err(&pdev->dev, "default is %d but only %d displaysn",
                        mach_info->default_display, mach_info->num_displays);
                return -EINVAL;
        }

        display = mach_info->displays + mach_info->default_display;   // 获取使用的LCD描述信息

        irq = platform_get_irq(pdev, 0);
        if (irq < 0) {
                dev_err(&pdev->dev, "no irq for devicen");
                return -ENOENT;
        }

        fbinfo = framebuffer_alloc(sizeof(struct s3c2410fb_info), &pdev->dev);  // 分配一个fb_info结构体,额外分配s3c2410fb_info大小的内存,初始化fbinfo->device = &pdev->dev
        if (!fbinfo)
                return -ENOMEM;

        platform_set_drvdata(pdev, fbinfo);             // 设置pdev->dev.driver_data = fbinfo

        info = fbinfo->par;                         // 获取成员par
        info->dev = &pdev->dev;                     // 初始化par成员
        info->drv_type = drv_type;

        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);  // 获取第一个内存资源,地址范围0x4D000000~(0x4D000000+1MB)
        if (res == NULL) {
                dev_err(&pdev->dev, "failed to get memory registersn");
                ret = -ENXIO;
                goto dealloc_fb;
        }
        size = resource_size(res);           // 1MB
        info->mem = request_mem_region(res->start, size, pdev->name); // 动态申请内存
        if (info->mem == NULL) {       // 内存已经被使用
                dev_err(&pdev->dev, "failed to get memory regionn");
                ret = -ENOENT;
                goto dealloc_fb;
        }

        info->io = ioremap(res->start, size);   // 将LCD相关寄存器起始物理地址映射到虚拟地址,并返回虚拟地址
        if (info->io == NULL) {
                dev_err(&pdev->dev, "ioremap() of registers failedn");
                ret = -ENXIO;
                goto release_mem;
        }

        if (drv_type == DRV_S3C2412)
                info->irq_base = info->io + S3C2412_LCDINTBASE;
        else
                info->irq_base = info->io + S3C2410_LCDINTBASE;

        dprintk("devinitn");

        strcpy(fbinfo->fix.id, driver_name);  // 设置fb_info成员id为s3c2410fb

        /* Stop the video */
        lcdcon1 = readl(info->io + S3C2410_LCDCON1);   // S3C2410_LCDCON1=0,从而得到LCDCON1寄存器地址 读取寄存器值
        writel(lcdcon1 & ~S3C2410_LCDCON1_ENVID, info->io + S3C2410_LCDCON1); // 输出使能位设置为禁止

        // 设置LCD不可变参数
        fbinfo->fix.type            = FB_TYPE_PACKED_PIXELS;       
        fbinfo->fix.type_aux        = 0;
        fbinfo->fix.xpanstep        = 0;
        fbinfo->fix.ypanstep        = 0;
        fbinfo->fix.ywrapstep       = 0;
        fbinfo->fix.accel           = FB_ACCEL_NONE;

       // 设置LCD可变参数
        fbinfo->var.nonstd          = 0;
        fbinfo->var.activate        = FB_ACTIVATE_NOW;
        fbinfo->var.accel_flags     = 0;
        fbinfo->var.vmode           = FB_VMODE_NONINTERLACED;

     // 设置LCD操作函数
        fbinfo->fbops               = &s3c2410fb_ops;
        fbinfo->flags               = FBINFO_FLAG_DEFAULT;
        fbinfo->pseudo_palette      = &info->pseudo_pal;

     // 清空调色板数组
        for (i = 0; i < 256; i++)
                info->palette_buffer[i] = PALETTE_BUFF_CLEAR;

        ret = request_irq(irq, s3c2410fb_irq, 0, pdev->name, info);    // 申请中断
        if (ret) {
                dev_err(&pdev->dev, "cannot get irq %d - err %dn", irq, ret);
                ret = -EBUSY;
                goto release_regs;
        }

        info->clk = clk_get(NULL, "lcd");         // 获取lcd时钟
        if (IS_ERR(info->clk)) {
                dev_err(&pdev->dev, "failed to get lcd clock sourcen");
                ret = PTR_ERR(info->clk);
                goto release_irq;
        }
clk_prepare_enable(info->clk); // 使能时钟 dprintk("got and enabled clockn"); usleep_range(1000, 1100); info->clk_rate = clk_get_rate(info->clk); // 获取时钟频率 /* find maximum required memory size for display */ for (i = 0; i < mach_info->num_displays; i++) { unsigned long smem_len = mach_info->displays[i].xres; smem_len *= mach_info->displays[i].yres; smem_len *= mach_info->displays[i].bpp; smem_len >>= 3; if (fbinfo->fix.smem_len < smem_len) fbinfo->fix.smem_len = smem_len; } /* Initialize video memory */ ret = s3c2410fb_map_video_memory(fbinfo); //为framgebuffer缓冲区动态申请内存空间,物理地址为fbinfo->fix.smem_start,虚拟地址为fbinfo->screen_base,大小为页对齐(fbinbfo->fix.smem_len) if (ret) { dev_err(&pdev->dev, "Failed to allocate video RAM: %dn", ret); ret = -ENOMEM; goto release_clock; } dprintk("got video memoryn"); fbinfo->var.xres = display->xres; fbinfo->var.yres = display->yres; fbinfo->var.bits_per_pixel = display->bpp; s3c2410fb_init_registers(fbinfo); // 设置GPIO,配置GPCUP、GPCCON、GPDUP、GPDCON为LCD功能 实际上就是给寄存器赋值,值来自smdk2440_fb_info中设置的值 s3c2410fb_check_var(&fbinfo->var, fbinfo); ret = s3c2410fb_cpufreq_register(info); // 根据LCD可变参数、lefrt_margin、right_margin、以及LCD控制器时钟频率(HCLK),计算LCD控制器时序参数,并设置相应控制寄存器值 s3c2410fb_calculate_tft_lcd_regs if (ret < 0) { dev_err(&pdev->dev, "Failed to register cpufreqn"); goto free_video_memory; } ret = register_framebuffer(fbinfo); // 注册设备 if (ret < 0) { dev_err(&pdev->dev, "Failed to register framebuffer device: %dn", ret); goto free_cpufreq; } /* create device files */ ret = device_create_file(&pdev->dev, &dev_attr_debug); if (ret) dev_err(&pdev->dev, "failed to add debug attributen"); dev_info(&pdev->dev, "fb%d: %s frame buffer devicen", fbinfo->node, fbinfo->fix.id); return 0; free_cpufreq: s3c2410fb_cpufreq_deregister(info); free_video_memory: s3c2410fb_unmap_video_memory(fbinfo); release_clock: clk_disable_unprepare(info->clk); clk_put(info->clk); release_irq: free_irq(irq, info); release_regs: iounmap(info->io); release_mem: release_mem_region(res->start, size); dealloc_fb: framebuffer_release(fbinfo); return ret; }

这段代码是在太长了,我直接挑重点说:

  • 分配一个struct fb_info结构体变量fbinfo;
  • 设置fbinfo:
    • 设置LCD不可变参数;fbinfo->fix;
    • 设置LCD可变参数;fbinfo->var;
    • 设置LCD操作函数;fbinfo->fbops;
    • 设置其他成员,fbinfo->flags、fbinfo->pseudo_palette、fbinfo->clk_rate;
  • 硬件相关的操作:
    • 将LCD相关寄存器起始物理地址映射到虚拟地址,并返回虚拟地址;
    • 设置中断:通过request_irq注册中断,中断类型为IRQ_LCD,中断处理函数为s3c2410fb_irq
    • 设置framebuffer缓冲器地址:通过s3c2410fb_map_video_memory申请framebuffer显存,然后设置LCDSADDR1、LCDSADDR2、LCDSADDR3寄存器;
    • 配置引脚:通过s3c2410fb_init_registers设置GPIO端口C和GPIO端口D用于LCD;
    • 设置LCD控制器时序参数:通过s3c2410fb_cpufreq_register设置LCDCON1、LCDCON2、LCDCON3、LCDCON4、LCDCON5寄存器;
  • 注册fb_info结构体;

需要注意的是这里并没有打开背光灯,开不开背光灯影响不大。

6.2.1 struct s3c2410fb_info

struct s3c2410fb_info定义在drivers/video/fbdev/s3c2410fb.h:

struct s3c2410fb_info {
        struct device           *dev;  // 设备基类
        struct clk              *clk;  // lcd时钟

        struct resource         *mem;  // i/o 内存地址(虚拟地址)
        void __iomem            *io;   // lcd控制器寄存器基地址(虚拟地址)
        void __iomem            *irq_base;

        enum s3c_drv_type       drv_type;
        struct s3c2410fb_hw     regs;   // lcd控制寄存器

        unsigned long           clk_rate;   // 时钟频率
        unsigned int            palette_ready;

#ifdef CONFIG_ARM_S3C24XX_CPUFREQ
        struct notifier_block   freq_transition;
#endif

        /* keep these registers in case we need to re-write palette */
        u32                     palette_buffer[256];
        u32                     pseudo_pal[16];
};

6.3 s3c2410fb_cpufreq_register

该函数主要用来初始化LCD控制器时序参数:

static inline int s3c2410fb_cpufreq_register(struct s3c2410fb_info *info)
{
        info->freq_transition.notifier_call = s3c2410fb_cpufreq_transition;

        return cpufreq_register_notifier(&info->freq_transition,
                                         CPUFREQ_TRANSITION_NOTIFIER);
}

定位到函数s3c2410fb_cpufreq_transition:

static int s3c2410fb_cpufreq_transition(struct notifier_block *nb,
                                        unsigned long val, void *data)
{
        struct s3c2410fb_info *info;
        struct fb_info *fbinfo;
        long delta_f;

        info = container_of(nb, struct s3c2410fb_info, freq_transition);
        fbinfo = dev_get_drvdata(info->dev);

        /* work out change, <0 for speed-up */
        delta_f = info->clk_rate - clk_get_rate(info->clk);

        if ((val == CPUFREQ_POSTCHANGE && delta_f > 0) ||
            (val == CPUFREQ_PRECHANGE && delta_f < 0)) {
                info->clk_rate = clk_get_rate(info->clk);
                s3c2410fb_activate_var(fbinfo);
        }

        return 0;
}

最终定位到s3c2410fb_activate_var:

/* s3c2410fb_activate_var
 *
 * activate (set) the controller from the given framebuffer
 * information
 */
static void s3c2410fb_activate_var(struct fb_info *info)
{
        struct s3c2410fb_info *fbi = info->par;
        void __iomem *regs = fbi->io;
        int type = fbi->regs.lcdcon1 & S3C2410_LCDCON1_TFT;
        struct fb_var_screeninfo *var = &info->var;
        int clkdiv;

        clkdiv = DIV_ROUND_UP(s3c2410fb_calc_pixclk(fbi, var->pixclock), 2);  

        dprintk("%s: var->xres  = %dn", __func__, var->xres);
        dprintk("%s: var->yres  = %dn", __func__, var->yres);
        dprintk("%s: var->bpp   = %dn", __func__, var->bits_per_pixel);

        if (type == S3C2410_LCDCON1_TFT) {   // 走这里 TFT真彩
                s3c2410fb_calculate_tft_lcd_regs(info, &fbi->regs);  // 计算LCD控制器控制寄存器的值
                --clkdiv;
                if (clkdiv < 0)
                        clkdiv = 0;
        } else {
                s3c2410fb_calculate_stn_lcd_regs(info, &fbi->regs);
                if (clkdiv < 2)
                        clkdiv = 2;
        }

        fbi->regs.lcdcon1 |=  S3C2410_LCDCON1_CLKVAL(clkdiv);

        /* write new registers */

        dprintk("new register set:n");
        dprintk("lcdcon[1] = 0x%08lxn", fbi->regs.lcdcon1);
        dprintk("lcdcon[2] = 0x%08lxn", fbi->regs.lcdcon2);
        dprintk("lcdcon[3] = 0x%08lxn", fbi->regs.lcdcon3);
        dprintk("lcdcon[4] = 0x%08lxn", fbi->regs.lcdcon4);
        dprintk("lcdcon[5] = 0x%08lxn", fbi->regs.lcdcon5);

        writel(fbi->regs.lcdcon1 & ~S3C2410_LCDCON1_ENVID,   // 向LCD控制寄存器写入对应值
                regs + S3C2410_LCDCON1);            // LCD控制器寄存器基地址 + 控制寄存器偏移    (虚拟地址)
        writel(fbi->regs.lcdcon2, regs + S3C2410_LCDCON2);
        writel(fbi->regs.lcdcon3, regs + S3C2410_LCDCON3);
        writel(fbi->regs.lcdcon4, regs + S3C2410_LCDCON4);
        writel(fbi->regs.lcdcon5, regs + S3C2410_LCDCON5);

        /* set lcd address pointers */
        s3c2410fb_set_lcdaddr(info);

        fbi->regs.lcdcon1 |= S3C2410_LCDCON1_ENVID,    // 使能LCD
        writel(fbi->regs.lcdcon1, regs + S3C2410_LCDCON1);
}

这里我们简单介绍一下CLKVAL的计算方法,这里计算方式如下:

$$clkdiv =frac{clk_rate * pixclock} {2^{12}*2}-1 $$

clk_rate为HCLK频率,也就是100HMz,而 pixclock为每个像素时长,由于我们采用T35屏幕像素时钟信号$VCLK=6.4MHz$,对应每像素时长1/(6.4*10^6)*10^12=156250皮秒。

所以:

$$VCLK=frac{10^{12}}{pixclock}$$

因此可以计算出:

$$CLKVAL=HCLK/VCLK/2−1=frac{HCLK*pixclock}{2*10^{12}}-1$$

6.4 s3c2410fb_calculate_tft_lcd_regs

s3c2410fb_calculate_tft_lcd_regs函数用于计算LCD控制寄存器的值,并保存到regs对应成员变量中。

/* s3c2410fb_calculate_tft_lcd_regs
 *
 * calculate register values from var settings
 */
static void s3c2410fb_calculate_tft_lcd_regs(const struct fb_info *info,
                                             struct s3c2410fb_hw *regs)
{
        const struct s3c2410fb_info *fbi = info->par;
        const struct fb_var_screeninfo *var = &info->var;

        switch (var->bits_per_pixel) {
        case 1:
                regs->lcdcon1 |= S3C2410_LCDCON1_TFT1BPP;
                break;
        case 2:
                regs->lcdcon1 |= S3C2410_LCDCON1_TFT2BPP;
                break;
        case 4:
                regs->lcdcon1 |= S3C2410_LCDCON1_TFT4BPP;
                break;
        case 8:
                regs->lcdcon1 |= S3C2410_LCDCON1_TFT8BPP;
                regs->lcdcon5 |= S3C2410_LCDCON5_BSWP |
                                 S3C2410_LCDCON5_FRM565;
                regs->lcdcon5 &= ~S3C2410_LCDCON5_HWSWP;
                break;
        case 16:
                regs->lcdcon1 |= S3C2410_LCDCON1_TFT16BPP;
                regs->lcdcon5 &= ~S3C2410_LCDCON5_BSWP;
                regs->lcdcon5 |= S3C2410_LCDCON5_HWSWP;
                break;
        case 32:
                regs->lcdcon1 |= S3C2410_LCDCON1_TFT24BPP;
                regs->lcdcon5 &= ~(S3C2410_LCDCON5_BSWP |
                                   S3C2410_LCDCON5_HWSWP |
                                   S3C2410_LCDCON5_BPP24BL);
                break;
        default:
                /* invalid pixel depth */
                dev_err(fbi->dev, "invalid bpp %dn",
                        var->bits_per_pixel);
        }
        /* update X/Y info */
        dprintk("setting vert: up=%d, low=%d, sync=%dn",
                var->upper_margin, var->lower_margin, var->vsync_len);

        dprintk("setting horz: lft=%d, rt=%d, sync=%dn",
                var->left_margin, var->right_margin, var->hsync_len);

        regs->lcdcon2 = S3C2410_LCDCON2_LINEVAL(var->yres - 1) |
                        S3C2410_LCDCON2_VBPD(var->upper_margin - 1) |
                        S3C2410_LCDCON2_VFPD(var->lower_margin - 1) |
                        S3C2410_LCDCON2_VSPW(var->vsync_len - 1);

        regs->lcdcon3 = S3C2410_LCDCON3_HBPD(var->right_margin - 1) |
                        S3C2410_LCDCON3_HFPD(var->left_margin - 1) |
                        S3C2410_LCDCON3_HOZVAL(var->xres - 1);

        regs->lcdcon4 = S3C2410_LCDCON4_HSPW(var->hsync_len - 1);
}

七、platform总线设备驱动(s3c2410-lcd)

我们已经介绍了:

  • name为s3c2410-lcd的platform设备的注册;
  • name为s3c2410-lcd的platform驱动的注册;

我们把这两部分代码整理成如下框框,方便查看:

从这张图我们可以学习linux内核platform总线设备驱动的编写,以及如何将各部分代码进行拆分放到linux各个目录结构下。

八、修改内核自带的LCD驱动

8.1 修改smdk2440_lcd_cfg

这里主要就是设置LCD时序相关参数,我们在Mini2440裸机开发之LCD基础中介绍过型号为LCD-P35(LQ035Q1DG04和ZQ3506_V0手册通用)的时序参数设置。这里我们以另外一款LCD为例,型号为LCD-T35(TD035STEB4),参考TD035STEB4 LCD数据手册上的参数性能,见下表:

LCD 大小为240×320,16BPP数据格式,则:$$HOZVAL=240-1,LINEVAL=240-1$$
水平同步信号的脉宽、前肩和后肩分别取10、10和20,则:$$HSPW=10-1=9,HFPD=10−1=9,HBPD=20−1=19$$
垂直同步信号的脉宽、前肩和后肩分别取2、2和2,则:$$VSPW=2-1=1,VFPD=2−1=1,VBPD=2−1=1$$
HCLK的频率为100MHz,要想驱动像素时钟信号为6.4MHz的LCD屏,则通过上式计算CLKVAL值:
$$CLKVAL=HCLK/VCLK/2−1=100/6.4/2−1=6.8$$

结果CLKVAL为6.8MHZ,取整后(值为7)放入寄存器LCDCON1中相应的位置即可。由于CLKVAL进行了取整,因此我们把取整后的值代入上式,重新计算VCLK,得到$VCLK=6.25MHz$。
修改arch/arm/mach-s3c24xx/mach-smdk2440.c文件,定义宏:

/*  LCD T35参数设定 */
#define     LCD_WIDTH   240             /* LCD面板的行宽 */
#define     LCD_HEIGHT  320             /* LCD面板的列宽 */

#define     VSPW        1                /* 通过计算无效行数垂直同步脉冲宽度决定VSYNC脉冲的高电平宽度 */
#define     VBPD        1                /* 垂直同步周期后的无效行数 */
#define     LINEVAL     (LCD_HEIGHT-1)  /* LCD的垂直宽度-1 */
#define     VFPD        1                /* 垂直同步周期前的的无效行数 */

#define     CLKVAL      7              /* VCLK = HCLK / [(CLKVAL  + 1)  × 2] */

#define     HSPW        9                /* 通过计算VCLK的数水平同步脉冲宽度决定HSYNC脉冲的高电平宽度 */
#define     HBPD        19               /* 描述水平后沿为HSYNC的下降沿与有效数据的开始之间的VCLK周期数 */
#define     HOZVAL      (LCD_WIDTH-1)    /* LCD的水平宽度-1 */
#define     HFPD        9                /* 水平后沿为有效数据的结束与HSYNC的上升沿之间的VCLK周期数 */

修改中smdk2440_lcd_cfg:

static struct s3c2410fb_display smdk2440_lcd_cfg __initdata = {

        .lcdcon5        = S3C2410_LCDCON5_FRM565 |
                          S3C2410_LCDCON5_INVVLINE |
                          S3C2410_LCDCON5_INVVFRAME |
                          S3C2410_LCDCON5_PWREN |
                          S3C2410_LCDCON5_HWSWP,

        .type           = S3C2410_LCDCON1_TFT,

        .width          = LCD_WIDTH,
        .height         = LCD_HEIGHT,

        .pixclock       = 156250, /* 每个像素时长,10^12/VCLK */
        .xres           = LCD_WIDTH,
        .yres           = LCD_HEIGHT,
        .bpp            = 16,
        .left_margin    = HFPD,      // HFPD
        .right_margin   = HBPD,      // HBPD   
        .hsync_len      = HSPW,      // HSPW 
        .upper_margin   = VBPD,      // VBPD
        .lower_margin   = VFPD,      // VFPD
        .vsync_len      = VSPW,      // VSPW
};

8.2 修改smdk2440_fb_info 

修改arch/arm/mach-s3c24xx/mach-smdk2440.c中smdk2440_lcd_cfg:

static struct s3c2410fb_mach_info smdk2440_fb_info __initdata = {
        .displays       = &smdk2440_lcd_cfg,
        .num_displays   = 1,
        .default_display = 0,

#if 1
        /* currently setup by downloader */
        .gpccon         = 0xaaaaaaaa,
        .gpccon_mask    = 0xffffffff,
        .gpcup          = 0xffffffff,
        .gpcup_mask     = 0xffffffff,
        .gpdcon         = 0xaaaaaaaa,
        .gpdcon_mask    = 0xffffffff,
        .gpdup          = 0xffffffff,
        .gpdup_mask     = 0xffffffff,
#endif

        .lpcsel         = ((0xCE6) & ~7) | 1<<1,   // 第一位设置为1 选择输出分片率类型0:320 * 240  1:240*320
};

8.3 配置启动logo

执行如下命令:

root@zhengyang:/work/sambashare/linux-5.2.8# make menuconfig

配置内核,显示启动logo:

Device Drivers  --->
    Graphics support  --->
        [*] Bootup logo --->
        Frame buffer Devices  --->
               <*> Support for frame buffer devices --->
                     <*> S3C2410 LCD framebuffer support      // 支持S3C2410、S3C2440

保存文件,输入文件名s3c2440_defconfig,在当前路径下生成s3c2440_defconfig:存档:

mv s3c2440_defconfig ./arch/arm/configs/

8.4 编译内核

此时重新执行:

make distclean
make s3c2440_defconfig    
make uImage V=1

将uImage复制到tftp服务器路径下:

 cp /work/sambashare/linux-5.2.8/arch/arm/boot/uImage /work/tftpboot/

8.5 烧录内核

开发板uboot启动完成后,内核启动前,按下任意键,进入uboot,可以通过print查看uboot中已经设置的环境变量。

设置开发板ip地址,从而可以使用网络服务:

SMDK2440 # set ipaddr 192.168.0.105
SMDK2440 # save
Saving Environment to NAND...
Erasing NAND...

Erasing at 0x40000 -- 100% complete.
Writing to NAND... OK
SMDK2440 # ping 192.168.0.200
dm9000 i/o: 0x20000000, id: 0x90000a46 
DM9000: running in 16 bit mode
MAC: 08:00:3e:26:0a:5b
operating at unknown: 0 mode
Using dm9000 device
host 192.168.0.200 is alive

设置tftp服务器地址,也就是我们ubuntu服务器地址:

set serverip 192.168.0.200
save

下载内核到内存,并写NAND FLASH:

tftp 30000000 uImage
nand erase.part kernel
nand write 30000000 kernel

运行结果如下:

SMDK2440 # tftp 30000000 uImage
dm9000 i/o: 0x20000000, id: 0x90000a46 
DM9000: running in 16 bit mode
MAC: 08:00:3e:26:0a:5b
operating at unknown: 0 mode
Using dm9000 device
TFTP from server 192.168.0.200; our IP address is 192.168.0.188
Filename 'uImage'.
Load address: 0x30000000
Loading: *#################################################################
     #################################################################
     #################################################################
     ##############################################################
     429.7 KiB/s
done
Bytes transferred = 3766128 (397770 hex)
SMDK2440 # nand erase.part kernel

NAND erase.part: device 0 offset 0x60000, size 0x400000

Erasing at 0x60000 --   3% complete.
Erasing at 0x80000 --   6% complete.
Erasing at 0xa0000 --   9% complete.
Erasing at 0xc0000 --  12% complete.
Erasing at 0xe0000 --  15% complete.
Erasing at 0x100000 --  18% complete.
Erasing at 0x120000 --  21% complete.
Erasing at 0x140000 --  25% complete.
Erasing at 0x160000 --  28% complete.
Erasing at 0x180000 --  31% complete.
Erasing at 0x1a0000 --  34% complete.
Erasing at 0x1c0000 --  37% complete.
Erasing at 0x1e0000 --  40% complete.
Erasing at 0x200000 --  43% complete.
Erasing at 0x220000 --  46% complete.
Erasing at 0x240000 --  50% complete.
Erasing at 0x260000 --  53% complete.
Erasing at 0x280000 --  56% complete.
Erasing at 0x2a0000 --  59% complete.
Erasing at 0x2c0000 --  62% complete.
Erasing at 0x2e0000 --  65% complete.
Erasing at 0x300000 --  68% complete.
Erasing at 0x320000 --  71% complete.
Erasing at 0x340000 --  75% complete.
Erasing at 0x360000 --  78% complete.
Erasing at 0x380000 --  81% complete.
Erasing at 0x3a0000 --  84% complete.
Erasing at 0x3c0000 --  87% complete.
Erasing at 0x3e0000 --  90% complete.
Erasing at 0x400000 --  93% complete.
Erasing at 0x420000 --  96% complete.
Erasing at 0x440000 -- 100% complete.
OK
SMDK2440 # nand write 30000000 kernel

NAND write: device 0 offset 0x60000, size 0x400000
 4194304 bytes written: OK
下载完成后,重启开发板,内核启动完成后会在显示屏上看到启动logo:

在LCD参数设置过程中,为了查看寄存器设置的参数,我在drivers/video/fbdev/s3c2410fb.c中多处地方输出了寄存器的值信息,这样就可以在linux启动过程中看到寄存器的值,从而知道寄存器值有没有设置成功.

比如在s3c24xxfb_probe函数最后加入:

  printk("lcdcon[1] = 0x%08lxn", info->regs.lcdcon1);
  printk("lcdcon[2] = 0x%08lxn", info->regs.lcdcon2);
  printk("lcdcon[3] = 0x%08lxn", info->regs.lcdcon3);
  printk("lcdcon[4] = 0x%08lxn", info->regs.lcdcon4);
  printk("lcdcon[5] = 0x%08lxn", info->regs.lcdcon5);

截取部分内核启动输出信息如下:

map_video_memory: clear (ptrval):00026000
map_video_memory: dma=339c0000 cpu=(ptrval) size=00026000
got video memory
gpcup     = 0xffffffff
gpcup     = 0xaaaaaaaa
gpcup     = 0xffffffff
gpcup     = 0xaaaaaaaa
gpcup     = 0xffffffff
gpccon    = 0xaaaaaaaa
cpdup     = 0xffffffff
gpdcon    = 0xaaaaaaaa
s3c2410fb_activate_var: var->xres  = 240
s3c2410fb_activate_var: var->yres  = 320
s3c2410fb_activate_var: var->bpp   = 16
LCDSADDR1 = 0x19ce0000
LCDSADDR2 = 0x19cf2c00
LCDSADDR3 = 0x000000f0
Console: switching to colour frame buffer device 30x40
s3c2410-lcd s3c2410-lcd: fb0: s3c2410fb frame buffer device
lcdcon[1] = 0x00000779
lcdcon[2] = 0x014fc041
lcdcon[3] = 0x0098ef09
lcdcon[4] = 0x00000009
lcdcon[5] = 0x00000f09 

8.6 演示

修改根文件系统inittab文件:

root@zhengyang:/work/nfs_root/rootfs# cd /work/nfs_root/rootfs
root@zhengyang:/work/nfs_root/rootfs# vim etc/inittab

添加如下代码:

tty1::askfirst:-/bin/sh  #重启一个sh终端,并将信息输出到tty1设备

重新启动开发板,LCD被点亮,并有“Please press Enter to activate this console.”提示字样。

运行如下命令:

 echo hello > /dev/tty1 

此时在LCD可以看到由hello显示出来。

安装linux驱动移植-输入子系统示例中介绍的案例驱动:

[root@zy:/]# insmod button_dev.ko
button_dev: loading out-of-tree module taints kernel.
button driver init
input: Unspecified device as /devices/virtual/input/input0
register irq

随便按下K1、K2、...,可以在LCD看到输出信息:

此外我们可以重定位控制台到LCD设备,重新启动开发板,在uboot运行过程中按下任意键,然后设定启动参数:

set bootargs "noinitrd console=tty1 root=/dev/nfs rw nfsroot=192.168.0.200:/work/nfs_root/rootfs ip=192.168.0.105:192.168.0.200:192.168.0.1:255.255.255.0::eth0:off"
save

重启开发板,此时启动输出信息就会输出到LCD显示屏上:

参考文章

[1]十二、Linux驱动之LCD驱动

[2]15.linux-LCD层次分析(详解)

[3]Linux LCD Frambuffer 基础介绍和使用(1)

[4]Linux驱动开发 (framebuffer驱动)

[5]Linux-FrameBuffer fb_info结构体解析申请以及注册

内容来源于网络如有侵权请私信删除

文章来源: 博客园

原文链接: https://www.cnblogs.com/zyly/p/16146712.html

你还没有登录,请先登录注册
  • 还没有人评论,欢迎说说您的想法!

相关课程