所谓数据转置,就是是将原始数据表格沿着对角线翻折,使原来的行变成新的列,原来的列变成新的行,从而更方便地进行数据分析和处理。

pandasDataFrame的转置非常简单,每个DataFrame对象都有一个T属性,通过这个属性就能得到转置之后的DataFrame
下面介绍几个数据转置常用的场景,感受下转置前后数据展示的区别。

1. 数据结构调整

有时候原始数据在行列方向上不太适合某些数据分析和处理需求,需要将其调整为合适的数据结构。
某些机器学习算法要求输入特征矩阵的行表示样本,列表示特征值,这时候就需要将原始数据表格进行转置。

比如,随机生成10个样本数据,每个样本有200个特征值:

import pandas as pd

df = pd.DataFrame(np.random.rand(200, 10))
df.columns = [
    "SAMPLE_"+s for s in list("ABCDEFGHIJ")
]
df

image.png
代表一个样本的所有特征的值,样本名称是按字母顺序生成的。
代表所有样本的一种特征值。

如果要让列显示各个特征值,行代表一个个样本的话,就需要转置操作。

df.T

image.png
转置之后,每代表一个样本的所有特征的值,更有利于观察每个样本的特征。

2. 数据展示效果

有时候为了更好地呈现数据,需要将原始数据表格进行转置。
在制作某些类型的图表或者报告中,将数据表格转置可以更加直观地展示重点数据信息。

比如,有如下学生成绩数据:

df = pd.DataFrame(
    np.random.randint(60, 100, (4, 3))
)
df.columns = ["语文", "数学", "英语"]
df.index = ["学生"+s for s in list("ABCD")]
df

image.png
这样的视图适合查看每个学生的成绩情况。
这样的结构以学生为主要视角,可以绘制各个学生的学科堆叠柱状图等。

转置之后如下:

df.T

image.png
这样的视图以学科为主要视角,方便查看每个学科的学习情况。
这样的结构适合绘制每个学科的学生成绩堆叠柱状图等。

此外,查看DataFrame概况信息时,也常常会转置之后查看。

df = pd.DataFrame(np.random.rand(200, 10))
df.columns = [
    "SAMPLE_" + s for s in list("ABCDEFGHIJ")
]

df.describe()

image.png

转置之后是这样的,可以体会在不同的视角下,数据给我们的感觉。

df.describe().T

image.png

内容来源于网络如有侵权请私信删除

文章来源: 博客园

原文链接: https://www.cnblogs.com/wang_yb/p/17633060.html

你还没有登录,请先登录注册
  • 还没有人评论,欢迎说说您的想法!